Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Salmonella as a tumour medication

23.10.2017

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target tumours and to colonise them. Researchers are aiming to make use of this property for cancer therapy, but they are facing a dilemma:


Electron microscopic image of Salmonella enterica (serovar Typhimurium).

HZI/Manfred Rohde

Salmonella infections are life-threatening. Scientists from the Helmholtz Centre for Infection Research (HZI) in Braunschweig now undertook a successful step towards the clinical application. They developed a Salmonella strain that induces only a harmless infection, but activates the immune system strongly enough to fight the tumours. Their results were published in the journal OncoImmunology.

Cancer diseases are some of the most common causes of death throughout the world, and they are still gaining in significance as the average general population gets older. However, we still do not have a satisfactory therapy for many types of tumours. One extremely promising approach is to involve the immune system in the control of the tumour.

Scientists from the HZI use Salmonella enterica bacteria to activate the immune system to tumours and to trigger an inherent defence reaction. In cancer patients, salmonellae colonise tumour tissue specifically, but the infection can take a life-threatening course. "For this type of tumour therapy, a strain of Salmonella must not only trigger a strong defence reaction of the immune system, but it must also not be too aggressive such that we can keep it in check," says Dr Sebastian Felgner, who is a scientist at the HZI.

The HZI researchers introduced genetic changes into the bacteria step-by-step and tried to find an optimal balance between safety and sufficient immune activation. "We changed numerous properties of the salmonellae, for example a component that eliminates the apparatus of motility and therefore restricts the mobility of the bacteria," says Felgner.

In order to increase the visibility of the bacteria to the immune system, the scientists also addressed certain other molecules in the membrane – which is the outer shell – of the salmonellae. This is where so called lipopolysaccharides consisting of sugar chains and lipid chains are anchored. These molecules reside on the surface of the bacteria and are recognised by the immune system as being foreign.

To hide themselves upon infection, salmonellae have a number of enzymes that cleave lipid chains as soon as they enter the host. "We switched off those cleaving enzymes in our Salmonella strain. As a result, the lipid chains on the surface of the bacteria are preserved in the patients and are quite visible to the immune system," says Felgner.

Following this scheme, the scientists introduced a number of other genetic modifications into their Salmonella strain and investigated the therapeutic effect in mice. In the course of this work, they successfully found a proper balance between attenuation of the bacteria and the intensity of the immune reaction, and even took another hurdle:

"One problem is that humans that have been exposed previously to the bacteria developed immunity against them and may possibly no longer respond to the therapeutic salmonellae," says Dr Siegfried Weiß, the former head of the "Molecular Immunology" department of the HZI, who now works at the Hannover Medical School. "Therefore, a therapeutic strain must be able to overcome this inherent protection of the body, since salmonella infections are rather common, especially in countries with poor hygienic conditions where large parts of the population are immune."

The numerous modifications introduced by the HZI researchers have now resulted in a Salmonella strain that mobilises the inherent defence even in mice that are immune to salmonellae. "Even tumours that used to be resistant to the strain are now eliminated by the immune system," says Weiß.

The research is being done in close cooperation with the "Infection Biology of Salmonella" young investigator group of Prof Marc Erhardt, who recently joined the Humboldt University in Berlin. A patent for the newly developed Salmonella strain has been filed. "Our strain is safe and at the same time effective enough for tumour therapy," says Sebastian Felgner. "The next step towards therapeutic application would be to test the strain in clinical studies in cooperation with industrial partners and to check its suitability for clinical application."

Original publication:
Sebastian Felgner, Dino Kocijancic, Michael Frahm, Ulrike Heise, Manfred Rohde, Kurt Zimmermann, Christine Falk, Marc Erhardt, and Siegfried Weiss: Engineered Salmonella enterica serovar Typhimurium overcomes limitations of anti-bacterial immunity in bacteria-mediated tumor therapy. OncoImmunology, 2017, DOI: 10.1080/2162402X.2017.1382791

The press release and a picture are also available on our website: https://www.helmholtz-hzi.de/en/news_events/news/view/article/complete/salmonell...

Helmholtz Centre for Infection Research:
Scientists at the Helmholtz Centre for Infection Research (HZI) in Braunschweig, Germany, are engaged in the study of different mechanisms of infection and of the body’s response to infection. Helping to improve the scientific community’s understanding of a given bacterium’s or virus’ pathogenicity is key to developing effective new treatments and vaccines. http://www.helmholtz-hzi.de/en

Contact:
Susanne Thiele, Press Officer
susanne.thiele@helmholtz-hzi.de
Dr Andreas Fischer, Editor
andreas.fischer@helmholtz-hzi.de

Helmholtz Centre for Infection Research
Press and Communications
Inhoffenstr. 7
D-38124 Braunschweig
Germany

Phone: +49 531 6181-1404

Susanne Thiele | Helmholtz-Zentrum für Infektionsforschung

More articles from Life Sciences:

nachricht Scientists find missing clue to how HIV hacks cells to propagate itself
09.11.2017 | University of Chicago

nachricht Bringing Natural Killer cells to the tumor battlefield
09.11.2017 | Luxembourg Institute of Health

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

Im Focus: Support Free with “TwoCure” – Innovation in Resin-Based 3D Printing

The Fraunhofer Institute for Laser Technology ILT and Rapid Shape GmbH are working together to further develop resin-based 3D printing. The new “TwoCure” process requires no support structures and is significantly more efficient and productive than conventional 3D printing techniques for plastic components. Experts from Fraunhofer ILT will be presenting the state-funded joint development that makes use of the interaction of light and cold in forming the components at formnext 2017 from November 14 to 17 in Frankfurt am Main.

Much like stereolithography, one of the best-known processes for printing 3D plastic components works using photolithographic light exposure that causes liquid...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

 
Latest News

Scientists find missing clue to how HIV hacks cells to propagate itself

09.11.2017 | Life Sciences

Bringing Natural Killer cells to the tumor battlefield

09.11.2017 | Life Sciences

Visual intelligence is not the same as IQ

09.11.2017 | Social Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>