Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Salivary mucins play active role to fight cavities

12.11.2014

Salivary mucins, key components of mucus, actively protect the teeth from the cariogenic bacterium, Streptococcus mutans, according to research published ahead of print in Applied and Environmental Microbiology.

The research suggests that bolstering native defenses might be a better way to fight dental caries than relying on exogenous materials, such as sealants and fluoride treatment, says first author Erica Shapiro Frenkel, of Harvard University, Cambridge, MA.


This is two overlayed fluorescent microscopy images of Streptococcus mutans, the primary bacteria responsible for dental cavities. When S. mutans forms biofilms on the tooth surface, it produces organic acids as metabolic byproducts that dissolve tooth enamel. The green fluorescent image shows S. mutans biofilm mass when grown in the presence of sucrose, a substrate necessary for substantial bacterial attachment and biofilm formation. The red fluorescent image overlayed depicts S. mutans biofilm mass in the presence of sucrose and purified human salivary mucins. Mucins are key structural components of mucus and saliva that play an important role in host defense.

Credit: Photo by Nicole Kavanaugh.

S. mutans attaches to teeth using sticky polymers that it produces, eventually forming a biofilm, a protected surface-associated bacterial community that is encased in secreted materials, says Frenkel. As S. mutans grows in the biofilm, it produces organic acids as metabolic byproducts that dissolve tooth enamel, which is the direct cause of cavities. "We focused on the effect of the salivary mucin, MUC5B on S. mutans attachment and biofilm formation because these are two key steps necessary for cavities to form," says Frenkel.

"We found that salivary mucins don't alter S. mutans' growth or lead to bacterial killing over 24 hours," says Frenkel. "Instead, they limit biofilm formation by keeping S. mutans suspended in the liquid medium. This is particularly significant for S. mutans because it only causes cavities when it is attached, or in a biofilm on the tooth's surface." She adds that the oral microbiome is better preserved when naturally occurring species aren't killed. "The ideal situation is to simply attenuate bacterial virulence," she says.

The study grew out of previous work in the investigators' laboratory showing that other types of mucins, such as porcine gastric mucins, had protective effects against common lung pathogens, says Frenkel. With this in mind, they suspected that salivary mucins would play a protective role, but they were not sure what that would be.

"Defects in mucin production have been linked to common diseases such as asthma, cystic fibrosis, and ulcerative colitis," says Frenkel. "There is increasing evidence that mucins aren't just part of the mucus for structure or physical protection, but that they play an active role in protecting the host from pathogens and maintaining a healthy microbial environment. We wanted to apply these emerging ideas to a disease model that is a widespread, global public health problem--cavities. We chose to study the interaction of MUC5B with Streptococcus mutans because it is the primary cavity-causing bacteria in the oral cavity."

The research makes a fundamental contribution to scientific understanding of host-microbe interactions, says principal investigator Katharina Ribbeck, of the Massachusetts Institute of Technology, Cambridge MA. "It is generating a paradigm shift from the textbook view of mucus as a simple catchall filter for particles, towards the understanding that mucus is a sophisticated bioactive material with powerful abilities to manipulate microbial behavior."

Applied and Environmental Microbiology is a publication of the American Society for Microbiology (ASM). The ASM is the largest single life science society, composed of over 39,000 scientists and health professionals. Its mission is to advance the microbiological sciences as a vehicle for understanding life processes and to apply and communicate this knowledge for the improvement of health and environmental and economic well-being worldwide.

Garth Hogan | EurekAlert!

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>