Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Saarland University bioinformaticians compute gene sequences inherited from each parent

22.01.2018

In the analysis of the human genome, one question researchers have so far left unanswered is how to differentiate the variants of a gene inherited from the mother and father. Such information would increase the likelihood of treating certain diseases successfully. The so-called third generation of sequencing technologies is now making this possible. One of the most important tools for solving this complex puzzle is special software developed by scientists at the Center for Bioinformatics at Saarland University. The renowned journal “Nature Communications” has reported twice on their research.

Humans have 46 chromosomes. These carry the genes and define the genetic material, the so-called genome. So that the number of chromosomes does not double with each generation, only 23 chromosomes are included in male and female germ cells, which merge in a fertilized egg cell to form a new life. Such a half-set of chromosomes is designated as “haploid.”


Tobias Marschall, Professor of Bioinformatics

Tobias Schwerdt

“Which gene variants I receive from my father or mother can decide whether I get sick, and also how I can best be medically treated,” explains Tobias Marschall, Professor of Bioinformatics at Saarland University. There he leads the group “Algorithms for Computational Genomics” at the Center for Bioinformatics.

Being able to analyze which gene variants were inherited from which parent, and thereby determine the so-called haplotype, is the new quantum leap for the sequencing of the human genome. Two developments are crucial for this: First, the so-called third-generation sequencing techniques, established by firms like Oxford Nanopore, 10x Genomics and Pacific Biosciences, deliver a different type of gene data.

“Through them, we now get much longer gene snippets and can now finally put into practice what we have long studied in theory,” says Marschall. He is actively involved in the second requirement: He develops the computational methods that make the mountains of genetic data manageable. Part of this has made its way into the software, named “WhatsHap,” that Marschall developed with his colleagues.

“Imagine an extremely difficult puzzle. With WhatsHap we solve two of them at the same time,” Marschall describes WhatsHap's approach. The bioinformatician is convinced that with the help of such programs, in the foreseeable future the determination of one's haplotype will become a routine examination in hospitals, just as identification of the blood group is today. He considers the two articles in the journal “Nature Communications” the first milestone for this.

The German Research Foundation (DFG) also confirmed the relevance of this work by announcing, last week, the financial support of two projects related to WhatsHap. In the first project, Professor Marschall will work together with Professor Gunnar Klau from the Heinrich Heine University of Duesseldorf on even more powerful computational methods for haplotyping.

In the second project, the DFG is supporting the long-term maintenance of the WhatsHap software as part of the “Sustainability of Research Software” initiative, paving the way for its use in everyday clinical practice. A total of 800,000 euro is available for these projects, of which 550,000 will go to Saarland University to create new positions for researchers and developers.

Background: Saarland Informatics Campus (SIC)

The core of the Saarland Informatics Campus is the Department of Computer Science at Saarland University. In the immediate vicinity, seven other world-renowned research institutes conduct research on the campus. Along with the two Max Planck Institutes for Informatics and for Software Systems, these are the German Research Center for Artificial Intelligence (DFKI), the Center for Bioinformatics, the Intel Visual Computing Institute, the CISPA Helmholtz Center i.G. and the Cluster of Excellence “Multimodal Computing and Interaction” (MMCI).

Press photos: www.uni-saarland.de/pressefotos

Questions can be directed to:
Jun.-Prof. Dr. Tobias Marschall
Center for Bioinformatics
Saarland Informatics Campus (SIC)
Tel.: +49 681 302 70880
E-mail: marschall@cs.uni-saarland.de

Editor:
Gordon Bolduan
Competence Center Computer Science Saarland
Saarland Informatics Campus (SIC)
Tel.: +49 681 302 70 741
E-mail: bolduan@mmci.uni-saarland.de

Weitere Informationen:

http://dx.doi.org/10.1038/s41467-017-01389-4
http://dx.doi.org/10.1038/s41467-017-01343-4

Friederike Meyer zu Tittingdorf | Universität des Saarlandes
Further information:
http://www.uni-saarland.de

More articles from Life Sciences:

nachricht Newly designed molecule binds nitrogen
23.02.2018 | Julius-Maximilians-Universität Würzburg

nachricht Atomic Design by Water
23.02.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>