Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

RUDN chemists have discovered a new formation mechanism of anti-cancer substances

06.11.2017

Scientists at RUDN University discovered a new formation mechanism of substances that help synthesize anti-cancer drugs

RUDN University chemists revised the formation mechanism of organophosphorus complexes with metal. The results of the study may help in the production of organophosphorus compounds, polymers with specified properties as well as in the synthesis of anti-cancer drugs, as reported by Journal of Organometallic Chemistry.


This is one of the cymantrene derivatives used in the study.

Credit: Alexander Smol'yakov

The scientists are working on methods of creating substances with carbon-phosphorus chemical bonds, using organometallic compounds. The result of such reactions is formation of organophosphorus complexes that are biologically active organic molecules, containing phosphorus atoms in their structure. Stearyl phosphate complexes are of most interest, that are an important class of molecules (vinylphosphonates), widely used in organic chemistry.

Various organophosphorus compounds are synthesized of them, functionally substituted polymers with specified properties (for example, incombustible materials). The importance of new methods for the synthesis of vinylphosphonates is simple to explain: such substances are used extensively in cellular research and are promising for the development of anti-cancer drugs.

Recently, the scientists have been actively exploring rhenium (Re) metal complexes for their possible use as anti-cancer drugs. Organometallic complexes with CO ligands can be used as so-called CO-releasing molecules for the destruction of cancer cells. Organometallic complexes with rhenium are also used in infrared spectromicroscopy of cells.

The authors selected vinylidene complexes of manganese (Mn) and rhenium (Re) as starting materials, that joined trivalent phosphorus (trialkyl phosphites, phosphonites and phosphinites) in a combination reaction. The chemists supposed that the result would be styrylphosphonate complexes, but the mechanism of this transformation was not entirely clear.

"Having certain experience in the study of the interaction between vinylidene complexes of transition metals and organic phosphorus derivatives, we assumed that the mechanism of the chemical reaction that they proposed earlier does not correspond to reality and requires a more detailed investigation", as noted by co-author of the study Alexander Smol'yakov.

The chemists determined the structure of the intermediate and final products of the reactions of manganese and rhenium vinylidene complexes and their derivatives using spectroscopic methods, and also selected the necessary conditions to perform the reaction for the isolation of intermediates in the form of single crystals for the purpose of studying them by X-ray diffraction (studying the atomic structure of a crystal using X-ray radiation).

As a result, it was found that the reaction does not proceed according to the Michaelis-Arbuzov reaction mechanism, as previously thought, but another way. The scientists proved that during synthesis of styrylphosphonate complexes some by-products form. Their decomposition in water leads to the formation of the desired compounds.

The transformations discovered by RUDN University scientists may be used to develop methods for preparation of vinylphosphonate derivatives from terminal alkynes (carbons with a triple bond at the ends of the molecule), which is important for the purposes of organic synthesis.

In the future, RUDN University scientists are going to expand the range of organometallic complexes they work with. This will allow a better understanding of the possibilities of multiple (not single) metal-carbon bonds complexes chemistry.

Media Contact

Valeriya V. Antonova
antonova_vv@rudn.university

http://www.rudn.ru/en/ 

Valeriya V. Antonova | EurekAlert!

More articles from Life Sciences:

nachricht Opening the cavity floodgates
23.01.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Incentive to Move
23.01.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Optical Nanoscope Allows Imaging of Quantum Dots

Physicists have developed a technique based on optical microscopy that can be used to create images of atoms on the nanoscale. In particular, the new method allows the imaging of quantum dots in a semiconductor chip. Together with colleagues from the University of Bochum, scientists from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute reported the findings in the journal Nature Photonics.

Microscopes allow us to see structures that are otherwise invisible to the human eye. However, conventional optical microscopes cannot be used to image...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Researchers reveal how microbes cope in phosphorus-deficient tropical soil

23.01.2018 | Earth Sciences

Opening the cavity floodgates

23.01.2018 | Life Sciences

Siberian scientists suggested a new method for synthesizing a promising magnetic material

23.01.2018 | Materials Sciences

VideoLinks Science & Research
Overview of more VideoLinks >>>