Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

RUDN chemists have discovered a new formation mechanism of anti-cancer substances

06.11.2017

Scientists at RUDN University discovered a new formation mechanism of substances that help synthesize anti-cancer drugs

RUDN University chemists revised the formation mechanism of organophosphorus complexes with metal. The results of the study may help in the production of organophosphorus compounds, polymers with specified properties as well as in the synthesis of anti-cancer drugs, as reported by Journal of Organometallic Chemistry.


This is one of the cymantrene derivatives used in the study.

Credit: Alexander Smol'yakov

The scientists are working on methods of creating substances with carbon-phosphorus chemical bonds, using organometallic compounds. The result of such reactions is formation of organophosphorus complexes that are biologically active organic molecules, containing phosphorus atoms in their structure. Stearyl phosphate complexes are of most interest, that are an important class of molecules (vinylphosphonates), widely used in organic chemistry.

Various organophosphorus compounds are synthesized of them, functionally substituted polymers with specified properties (for example, incombustible materials). The importance of new methods for the synthesis of vinylphosphonates is simple to explain: such substances are used extensively in cellular research and are promising for the development of anti-cancer drugs.

Recently, the scientists have been actively exploring rhenium (Re) metal complexes for their possible use as anti-cancer drugs. Organometallic complexes with CO ligands can be used as so-called CO-releasing molecules for the destruction of cancer cells. Organometallic complexes with rhenium are also used in infrared spectromicroscopy of cells.

The authors selected vinylidene complexes of manganese (Mn) and rhenium (Re) as starting materials, that joined trivalent phosphorus (trialkyl phosphites, phosphonites and phosphinites) in a combination reaction. The chemists supposed that the result would be styrylphosphonate complexes, but the mechanism of this transformation was not entirely clear.

"Having certain experience in the study of the interaction between vinylidene complexes of transition metals and organic phosphorus derivatives, we assumed that the mechanism of the chemical reaction that they proposed earlier does not correspond to reality and requires a more detailed investigation", as noted by co-author of the study Alexander Smol'yakov.

The chemists determined the structure of the intermediate and final products of the reactions of manganese and rhenium vinylidene complexes and their derivatives using spectroscopic methods, and also selected the necessary conditions to perform the reaction for the isolation of intermediates in the form of single crystals for the purpose of studying them by X-ray diffraction (studying the atomic structure of a crystal using X-ray radiation).

As a result, it was found that the reaction does not proceed according to the Michaelis-Arbuzov reaction mechanism, as previously thought, but another way. The scientists proved that during synthesis of styrylphosphonate complexes some by-products form. Their decomposition in water leads to the formation of the desired compounds.

The transformations discovered by RUDN University scientists may be used to develop methods for preparation of vinylphosphonate derivatives from terminal alkynes (carbons with a triple bond at the ends of the molecule), which is important for the purposes of organic synthesis.

In the future, RUDN University scientists are going to expand the range of organometallic complexes they work with. This will allow a better understanding of the possibilities of multiple (not single) metal-carbon bonds complexes chemistry.

Media Contact

Valeriya V. Antonova
antonova_vv@rudn.university

http://www.rudn.ru/en/ 

Valeriya V. Antonova | EurekAlert!

More articles from Life Sciences:

nachricht Rochester scientists discover gene controlling genetic recombination rates
23.04.2018 | University of Rochester

nachricht One step closer to reality
20.04.2018 | Max-Planck-Institut für Entwicklungsbiologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Tiny microenvironments in the ocean hold clues to global nitrogen cycle

23.04.2018 | Earth Sciences

Joining metals without welding

23.04.2018 | Trade Fair News

Researchers illuminate the path to a new era of microelectronics

23.04.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>