Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Robustness during neuron firings

16.11.2015

Superficial cortical interneurons decrease trial-to-trial variability in pyramidal neuron responses to sensory input

Scientists at the research center caesar in Bonn have, in cooperation with the Bernstein Center for Computational Neuroscience, the Max Planck Institute for Biological Cybernetics and the Max Planck Florida Institute for Neuroscience, discovered a potential mechanism of how cortical neurons decrease trial-to-trial variability in their response to sensory input.


Reconstructed single neurons from the rat cortex.

To gain this insight the researchers used computational modeling to generate predictions that were then tested in vivo using electrophysiological measurements.

Even the simplest sensory stimulus is thought to activate millions of synapses throughout the cortex. Until now it has been unclear how the principal neurons of the cortex, or pyramidal neurons, convert these sometimes very noisy inputs arriving at their dendrites into consistent electrophysiological responses, from one event to the next.

To answer this question, scientists in the Department of Behavior and Brain Organization from the research center caesar in Bonn, an Institute of the Max Planck Society, investigated how the neurons in the most superficial part of the mammalian cortex, also known as cortical Layer 1 (L1), interact with the neurons in the underlying cortical layers.

Why is this superficial part of the cortex so special? This part of the cortex only contains one broad class of neuron, an inhibitory neuron, and, in addition, dendrites which arise from excitatory neurons in the other deeper cortical layers.

Although these L1 inhibitory neurons are found only in low numbers, they are perfectly placed to potentially exert their inhibitory force on the dendrites from most underlying cortical layers. Exactly how this would be achieved was unclear, especially when the neurons were encoding stimulus inputs.

Using in vivo patch-clamp electrical recordings, combined with single neuron anatomical reconstruction techniques, scientists were able to reconstruct the 3D morphologies of the recorded L1 interneurons and integrate this anatomical and electrophysiological information into an existing biophysical model of the somatosensory cortex.

Computer simulations using this model suggested that the inhibitory interneurons should reduce the variability of the neural responses to sensory input signals from one trial to the next and thus control the robustness of neural patterns, at least in the dendrites.

This hypothesis derived from the theoretical model was confirmed in vivo by combining targeted electrophysiology and neuronal population imaging using 2-photon microscopy: When L1 interneurons were prevented from being activated, an increase in trial-to-trial variability could be observed, but not a change in the structure of the inputs. This left open the question of the underlying mechanism.

Through further simulations it became apparent that the mechanism that was most consistent with the data was that of distal dendritic shunting, which allows interneurons to have control over the way in which the dendrites integrate inputs arriving during sensory stimulation. In other words, this means that this is one way in which the inhibitory interneurons can influence how pyramidal neurons respond to sensory input and make their responses more consistent from trial to trial.

"A distal dendritic shunting may be - across all sensory modalities – a universal organizational principle of the cortex to specifically control the robustness of sensory-evoked responses", says Jason Kerr, a scientific director at caesar.

Original publication
Egger, R., Schmitt, A.C., Wallace, D.J., Sakmann, B., Oberlaender, M. & Kerr, J.N. (2015) “Robustness of sensory-evoked excitation is increased by inhibitory inputs to distal apical tuft dendrites“, Proc. Natl. Acad. Sci. USA [Epub ahead of print]

DOI: 10.1073/pnas.1518773112

Contact
Dept. Behavior and Brain Organization
Research Center caesar – an Institute of the Max Planck Society
Ludwig-Erhard-Allee 2
53175 Bonn, Germany
+49 (0)228 9656-103
jason.kerr(at)caesar.de

Weitere Informationen:

http://www.caesar.de/1387.html?&L=0

Dr. Jürgen Reifarth | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>