Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

RNA splicing machinery offers new drug target

19.05.2015

Blocking the spliceosome delays the progression of lymphoma in mice

A widespread cancer-causing protein called MYC promotes the growth of tumor cells in part by ensuring that RNA transcripts are properly spliced, according to latest work from A*STAR researchers1. Drugs that block parts of the cell’s splicing machinery may provide a new way to halt the proliferation of MYC-driven cancers.


Blocking the spliceosome could inhibit the growth of MYC-driven tumors.

© defun/iStock/Thinkstock

“Cells overexpressing the oncogene MYC will be more sensitive to inhibition of the splicing machinery,” says Ernesto Guccione, from the A*STAR Institute of Molecular and Cell Biology, who led the research. “Targeting the core components of the splicing machinery may be a novel Achilles’ heel to therapeutically target MYC-driven tumors.”

The MYC oncoprotein is a central driver in the majority of human cancers. MYC binds to active regulatory elements in the genome and broadly amplifies gene expression, leading to rampant cell growth. This process, however, is not random or indiscriminate. Guccione, in collaboration with colleagues in Italy, recently showed that MYC preferentially activates distinct subsets of target genes to control cellular states2.

Following up on that observation, Guccione and his colleagues from A*STAR decided to investigate which gene sets are turned on by MYC in mouse models of lymphoma. One gene set that stood out involved components of the spliceosome, the molecular complex that helps prepare messenger RNA (mRNA) transcripts for protein production by removing noncoding segments called introns.

These genes include PRMT5, which codes for a key enzyme that ensures proper maturation of the spliceosomal complex. PRMT5 and others help assemble the proteins that form the spliceosome. Guccione’s team showed that mice with only one functional copy of PRMT5 — instead of the usual two — develop lymphoma more slowly.

PRMT5 depletion led to a range of splicing defects linked to the retarded tumor growth. And drug-like molecules called antisense oligonucleotides (which disrupt proper splicing) also reduced the viability of cancer cells taken from mice with lymphoma. Together, the results suggest that splicing-associated genes like PRMT5 are critical to MYC-driven tumor formation.

Further support for this idea came from human clinical samples. Guccione and colleagues studied samples from people with lymphoma. They found a link between MYC overexpression and the activity of spliceosome-related genes. Notably, high expression of PRMT5 correlated with worse clinical outcomes. In the laboratory, knocking out PRMT5, or another core component of the splicing machinery in human lymphoma cells lines, also reduced cell viability.

“The inhibition of PRMT5 may have potential therapeutic utility in cancer treatment,” explains Cheryl Koh, a postdoctoral fellow in Guccione’s lab and the co-first author of the new study.

The A*STAR-affiliated researchers contributing to this research are from the Institute of Molecular and Cell Biology, the Institute of High Performance Computing and the Bioinformatics Institute.


References
Koh, C. M., Bezzi, M., Low, D. H. P., Ang, W. X., Teo, S. X. et al. MYC regulates the core Pre-mRNA splicing machinery as an essential step in lymphomagenesis. Nature advance online publication, 11 May 2015 (doi: 10.1038/nature14351). | article
Sabò, A., Kress, T. R., Pelizzola, M., de Pretis, S., Gorski, M. M. et al. Selective transcriptional regulation by Myc in cellular growth control and lymphomagenesis. Nature 511, 488–492 (2014). | article

A*STAR Research | ResearchSEA
Further information:
http://www.research.a-star.edu.sg/research/7236
http://www.researchsea.com

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Periodic ventilation keeps more pollen out than tilted-open windows

29.03.2017 | Health and Medicine

Researchers discover dust plays prominent role in nutrients of mountain forest ecoystems

29.03.2017 | Earth Sciences

OLED production facility from a single source

29.03.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>