Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

RNA simulations boost understanding of retroviral diseases

01.06.2016

New information on molecular shape offers treatment options

New molecular dynamics research into how RNA folds into hairpin-shaped structures called tetraloops could provide important insights into new treatments for retroviral diseases.


Z-state: An example of RNA folded into a tetraloop, in this case the "Z-form duplex" under study that could provide medical treatment opportunities for retroviral diseases such as Zika and Ebola. RNA nucleobases are colored using this key (Gray: Guanosine, Green: Cytosine, White: Adenosine). Hydrogen bonds are shown in blue. The sequence is gcGCAAgc (capitals indicate residues forming the loop).

Credit: Los Alamos National Laboratory

"Ribonucleic acid, known as RNA, forms the genome of multiple viruses that afflict humans, including Ebola, HIV and Zika, which are active areas of research at Los Alamos," said Jacob Miner, a Los Alamos National Laboratory graduate student in the Center for Nonlinear Studies and a member of the research team. "Being able to describe the structures and thermodynamic behaviors of these and other RNA molecules is critical for us as scientists to understand life at microscopic levels and to effect suitable measures to treat diseases."

"One of the most exciting discoveries in our computer models is the emergence of a particular type of tetraloop that we thought only formed in highly saline environments," said Miner. "Our results show that similar sequences may be spontaneously forming these tetraloops, called Z-form duplexes, in nature, providing a potential target for treating retroviral diseases," he noted.

... more about:
»HIV »RNA »RNA molecules »thermodynamic

Research at Los Alamos has advanced the science of molecular biology over the years through such efforts as using the Laboratory's supercomputers to create the world's largest computational biology simulation of ribosomes in action. Another project, detecting pathogens through RNA screening, has recently been opened up for corporate partnering. In addition, Los Alamos scientists are teaming with other institutions in human trials of a complex mosaic approach to a globally applicable HIV vaccine. Biological research, especially in disease forecasting and treatment, aids in national security in preventing or minimizing the effect of epidemics and stabilizing the health of the nation.

For the new RNA research, Miner and a team from Rensselaer Polytechnic Institute and the State University of New York, Albany pursued a goal of the nucleic-acid modeling community, that of understanding the various structures that linear chains of RNA molecules can form. While DNA has the well-known "double helix" structure, RNA's single chain permits it to writhe and contort into completely different shapes, each giving the RNA a different function, such as coding and decoding genes or building proteins.

The prevalence of one RNA configuration over another is driven by its thermodynamic stability, and the relative populations of these configurations can be modulated by changes in the solution environment such as temperature, pressure, ions and the presence of other molecules.

Molecular dynamics (MD), which allows scientists to model detailed molecular interactions of RNA with itself and solution, has proven to be one of the most useful tools in understanding the modulation of RNA configurations, Miner said. "The behaviors exhibited in MD simulations can be extended to describe macroscale thermodynamic properties in all manner of RNA structures. In the case of our research, it represents a significant advancement in the utility of RNA molecular dynamics for describing RNA thermodynamics."

###

The paper, "Free-energy landscape of a hyperstable RNA tetraloop," appears in the Proceedings of the National Academy of Sciences. Its authors are Jacob C. Miner of Los Alamos; Alan A. Chen of the State University of New York, Albany, and Angel E. García of Los Alamos and Rensselaer Polytechnic Institute.

These simulations were conducted using the TACC Stampede Supercomputer through the Extreme Science and Engineering Discovery Environment with support from National Science Foundation (NSF) Grant MCB-137078 and NIH Biotechnology Training Grant 5T32GM067545- 08/9. This work was funded by NSF Grant MCB-1050906 and US DOE LDRD funds.

About Los Alamos National Laboratory

Los Alamos National Laboratory, a multidisciplinary research institution engaged in strategic science on behalf of national security, is operated by Los Alamos National Security, LLC, a team composed of Bechtel National, the University of California, BWXT Government Group, and URS, an AECOM company, for the Department of Energy's National Nuclear Security Administration.

Media Contact

Nancy Ambrosiano
nwa@lanl.gov
505-667-0471

 @LosAlamosNatLab

http://www.lanl.gov 

Nancy Ambrosiano | EurekAlert!

Further reports about: HIV RNA RNA molecules thermodynamic

More articles from Life Sciences:

nachricht Closing the carbon loop
08.12.2016 | University of Pittsburgh

nachricht Newly discovered bacteria-binding protein in the intestine
08.12.2016 | University of Gothenburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>