Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

RNA simulations boost understanding of retroviral diseases

01.06.2016

New information on molecular shape offers treatment options

New molecular dynamics research into how RNA folds into hairpin-shaped structures called tetraloops could provide important insights into new treatments for retroviral diseases.


Z-state: An example of RNA folded into a tetraloop, in this case the "Z-form duplex" under study that could provide medical treatment opportunities for retroviral diseases such as Zika and Ebola. RNA nucleobases are colored using this key (Gray: Guanosine, Green: Cytosine, White: Adenosine). Hydrogen bonds are shown in blue. The sequence is gcGCAAgc (capitals indicate residues forming the loop).

Credit: Los Alamos National Laboratory

"Ribonucleic acid, known as RNA, forms the genome of multiple viruses that afflict humans, including Ebola, HIV and Zika, which are active areas of research at Los Alamos," said Jacob Miner, a Los Alamos National Laboratory graduate student in the Center for Nonlinear Studies and a member of the research team. "Being able to describe the structures and thermodynamic behaviors of these and other RNA molecules is critical for us as scientists to understand life at microscopic levels and to effect suitable measures to treat diseases."

"One of the most exciting discoveries in our computer models is the emergence of a particular type of tetraloop that we thought only formed in highly saline environments," said Miner. "Our results show that similar sequences may be spontaneously forming these tetraloops, called Z-form duplexes, in nature, providing a potential target for treating retroviral diseases," he noted.

... more about:
»HIV »RNA »RNA molecules »thermodynamic

Research at Los Alamos has advanced the science of molecular biology over the years through such efforts as using the Laboratory's supercomputers to create the world's largest computational biology simulation of ribosomes in action. Another project, detecting pathogens through RNA screening, has recently been opened up for corporate partnering. In addition, Los Alamos scientists are teaming with other institutions in human trials of a complex mosaic approach to a globally applicable HIV vaccine. Biological research, especially in disease forecasting and treatment, aids in national security in preventing or minimizing the effect of epidemics and stabilizing the health of the nation.

For the new RNA research, Miner and a team from Rensselaer Polytechnic Institute and the State University of New York, Albany pursued a goal of the nucleic-acid modeling community, that of understanding the various structures that linear chains of RNA molecules can form. While DNA has the well-known "double helix" structure, RNA's single chain permits it to writhe and contort into completely different shapes, each giving the RNA a different function, such as coding and decoding genes or building proteins.

The prevalence of one RNA configuration over another is driven by its thermodynamic stability, and the relative populations of these configurations can be modulated by changes in the solution environment such as temperature, pressure, ions and the presence of other molecules.

Molecular dynamics (MD), which allows scientists to model detailed molecular interactions of RNA with itself and solution, has proven to be one of the most useful tools in understanding the modulation of RNA configurations, Miner said. "The behaviors exhibited in MD simulations can be extended to describe macroscale thermodynamic properties in all manner of RNA structures. In the case of our research, it represents a significant advancement in the utility of RNA molecular dynamics for describing RNA thermodynamics."

###

The paper, "Free-energy landscape of a hyperstable RNA tetraloop," appears in the Proceedings of the National Academy of Sciences. Its authors are Jacob C. Miner of Los Alamos; Alan A. Chen of the State University of New York, Albany, and Angel E. García of Los Alamos and Rensselaer Polytechnic Institute.

These simulations were conducted using the TACC Stampede Supercomputer through the Extreme Science and Engineering Discovery Environment with support from National Science Foundation (NSF) Grant MCB-137078 and NIH Biotechnology Training Grant 5T32GM067545- 08/9. This work was funded by NSF Grant MCB-1050906 and US DOE LDRD funds.

About Los Alamos National Laboratory

Los Alamos National Laboratory, a multidisciplinary research institution engaged in strategic science on behalf of national security, is operated by Los Alamos National Security, LLC, a team composed of Bechtel National, the University of California, BWXT Government Group, and URS, an AECOM company, for the Department of Energy's National Nuclear Security Administration.

Media Contact

Nancy Ambrosiano
nwa@lanl.gov
505-667-0471

 @LosAlamosNatLab

http://www.lanl.gov 

Nancy Ambrosiano | EurekAlert!

Further reports about: HIV RNA RNA molecules thermodynamic

More articles from Life Sciences:

nachricht Modern genetic sequencing tools give clearer picture of how corals are related
17.08.2017 | University of Washington

nachricht The irresistible fragrance of dying vinegar flies
16.08.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Gold shines through properties of nano biosensors

17.08.2017 | Physics and Astronomy

Greenland ice flow likely to speed up: New data assert glaciers move over sediment, which gets more slippery as it gets wetter

17.08.2017 | Earth Sciences

Mars 2020 mission to use smart methods to seek signs of past life

17.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>