Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

RNA-binding Protein Influences Key Mediator of Cellular Inflammation and Stress Responses

31.07.2015

Messenger (mRNA) molecules are a key component of protein biosynthesis. They are first transcribed as a “working copy” of the DNA and then translated into protein molecules. RNA-binding proteins such as RC3H1 (also known as ROQUIN) regulate the degradation of the mRNA molecules and thus prevent the production of specific proteins. Researchers at the Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC) have now shown that ROQUIN binds several thousand mRNA molecules. They demonstrated that ROQUIN also influences the gene regulator NF-kappaB, a key mediator of cellular inflammation and stress responses (Nature Communications, Article number: 7367)*.

RC3H1/ROQUIN has already been described in previous studies as an RNA-binding protein that influences the stability of various mRNAs. Until now, however, it was unclear how ROQUIN recognizes mRNAs and how many mRNAs are regulated by ROQUIN. Dr. Yasuhiro Murakawa and Dr. Markus Landthaler of the Berlin Institute for Medical Systems Biology (BIMSB) of the MDC, in collaboration with the MDC research groups led by Professor Udo Heinemann, Dr. Stefan Kempa, Professor Claus Scheidereit, Dr. Jana Wolf and others, showed that ROQUIN binds to more than 3,800 different mRNAs, and they identified more than 16,000 sites to which the protein binds.

Thus, ROQUIN appears to have greater influence on the regulation of gene expression than previously thought. In addition, the researchers identified the RNA recognition sequences of ROQUIN, thus providing insight into where protein-RNA interactions take place.

ROQUIN regulates the response to DNA damage

ROQUIN preferentially binds mRNAs generated in response to DNA damage but also in the context of inflammatory responses. Many of the affected mRNAs encode for proteins, which in turn influence the activity of genes and thus regulate the production of other proteins. According to the researchers, ROQUIN contributes to the fine-tuning of the regulatory mechanisms.

One of the target transcripts of ROQUIN is the mRNA coding for the protein A20 (also known as TNFAIP3). A20 serves as feedback control of the IkappaBalpha-kinase complex (IKK) that regulates the activation of the gene regulator NF-kappaB. The IKK/NF-kappaB pathway regulates the expression of a number of genes and is one of the key mediators in inflammatory and cellular stress responses, e.g. induced by DNA damage.

To prevent the sustained activation of the IKK/NF-kappaB pathway, this signaling pathway itself induces the increased expression of proteins such as A20, accompanied by decreased IKK/NF-kappaB activation. By regulating the decay of the mRNA for A20, ROQUIN thus indirectly modulates the activity of the IKK/NF-kappaB pathway.

Better understanding of autoimmune diseases

The researchers hypothesize that ROQUIN may play an even more extensive functional role and is involved in other signaling pathways, where it shortens the life span of protein-encoding mRNAs and thus enables fine-tuning. These findings are important to better understand and possibly prevent autoimmune diseases. The protein A20, for example, is known as a protective factor against arthritis. Knockdown of ROQUIN, which results in increased A20 protein expression, may therefore represent an approach to treating this chronic joint inflammation disease.

*RC3H1 post-transcriptionally regulates A20 mRNA and modulates the activity of the IKK/NF-kB pathway
Yasuhiro Murakawa1, Michael Hinz2, Janina Mothes3, Anja Schuetz4,5, Michael Uhl6, Emanuel Wyler1, Tomoharu Yasuda7, Guido Mastrobuoni8, Caroline C. Friedel9, Lars Dölken10, Stefan Kempa8, Marc Schmidt-Supprian11, Nils Blüthgen12,13, Rolf Backofen6, Udo Heinemann4,14, Jana Wolf3, Claus Scheidereit2 & Markus Landthaler1

1 RNA Biology and Posttranscriptional Regulation, Berlin Institute of Medical Systems Biology at the Max-Delbrück Center for Molecular Medicine, 13125 Berlin, Germany.
2 Signal Transduction in Tumor Cells, Max-Delbrück Center for Molecular Medicine, 13125 Berlin, Germany.
3 Mathematical Modelling of Cellular Processes, Max-Delbrück Center for Molecular Medicine, 13125 Berlin, Germany.
4 Macromolecular Structure and Interaction, Max 97078-Delbrück Center for Molecular Medicine, 13125 Berlin, Germany.
5 Helmholtz Protein Sample Production Facility, Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany.
6 Department of Computer Science and Centre for Biological Signalling Studies (BIOSS), Albert-Ludwigs-Universität Freiburg, 79110 Freiburg, Germany.
7 Immune Regulation and Cancer, Max-Delbrück Center for Molecular Medicine, 13125 Berlin, Germany.
8 Integrative Proteomics and Metabolomics Platform, Berlin Institute of Medical Systems Biology at the MaxDelbrück Center for Molecular, 13125 Berlin, Germany.
9 Institut für Informatik, Ludwig-Maximilians-Universität, 80333 München, Germany.
10 Institute for Virology and Immunobiology, University of Würzburg, 97078 Würzburg, Germany.
11 Department of Hematology and Oncology, Technische Universität, 81675 München, Germany.
12 Institute of Pathology, Charité–Universitätsmedizin Berlin, 10117 Berlin, Germany.
13 Integrative Research Institute (IRI) for the Life Sciences and Institute for Theoretical Biology, Humboldt-Universität zu Berlin, 10115 Berlin, Germany.
14 Chemistry and Biochemistry Institute, Freie Universität Berlin, 14195

Contact:
Barbara Bachtler
Press Department
Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC)
Robert-Rössle-Straße 10
13125 Berlin
Germany
Phone: +49 (0) 30 94 06 - 38 96
Fax: +49 (0) 30 94 06 - 38 33
e-mail: presse@mdc-berlin.de
https://www.mdc-berlin.de/en

Barbara Bachtler | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

More articles from Life Sciences:

nachricht No gene is an island
25.07.2017 | Institute of Science and Technology Austria

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

No gene is an island

25.07.2017 | Life Sciences

Flexible proximity sensor creates smart surfaces

25.07.2017 | Materials Sciences

Ultrathin device harvests electricity from human motion

24.07.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>