Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

RNA-binding Protein Influences Key Mediator of Cellular Inflammation and Stress Responses

31.07.2015

Messenger (mRNA) molecules are a key component of protein biosynthesis. They are first transcribed as a “working copy” of the DNA and then translated into protein molecules. RNA-binding proteins such as RC3H1 (also known as ROQUIN) regulate the degradation of the mRNA molecules and thus prevent the production of specific proteins. Researchers at the Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC) have now shown that ROQUIN binds several thousand mRNA molecules. They demonstrated that ROQUIN also influences the gene regulator NF-kappaB, a key mediator of cellular inflammation and stress responses (Nature Communications, Article number: 7367)*.

RC3H1/ROQUIN has already been described in previous studies as an RNA-binding protein that influences the stability of various mRNAs. Until now, however, it was unclear how ROQUIN recognizes mRNAs and how many mRNAs are regulated by ROQUIN. Dr. Yasuhiro Murakawa and Dr. Markus Landthaler of the Berlin Institute for Medical Systems Biology (BIMSB) of the MDC, in collaboration with the MDC research groups led by Professor Udo Heinemann, Dr. Stefan Kempa, Professor Claus Scheidereit, Dr. Jana Wolf and others, showed that ROQUIN binds to more than 3,800 different mRNAs, and they identified more than 16,000 sites to which the protein binds.

Thus, ROQUIN appears to have greater influence on the regulation of gene expression than previously thought. In addition, the researchers identified the RNA recognition sequences of ROQUIN, thus providing insight into where protein-RNA interactions take place.

ROQUIN regulates the response to DNA damage

ROQUIN preferentially binds mRNAs generated in response to DNA damage but also in the context of inflammatory responses. Many of the affected mRNAs encode for proteins, which in turn influence the activity of genes and thus regulate the production of other proteins. According to the researchers, ROQUIN contributes to the fine-tuning of the regulatory mechanisms.

One of the target transcripts of ROQUIN is the mRNA coding for the protein A20 (also known as TNFAIP3). A20 serves as feedback control of the IkappaBalpha-kinase complex (IKK) that regulates the activation of the gene regulator NF-kappaB. The IKK/NF-kappaB pathway regulates the expression of a number of genes and is one of the key mediators in inflammatory and cellular stress responses, e.g. induced by DNA damage.

To prevent the sustained activation of the IKK/NF-kappaB pathway, this signaling pathway itself induces the increased expression of proteins such as A20, accompanied by decreased IKK/NF-kappaB activation. By regulating the decay of the mRNA for A20, ROQUIN thus indirectly modulates the activity of the IKK/NF-kappaB pathway.

Better understanding of autoimmune diseases

The researchers hypothesize that ROQUIN may play an even more extensive functional role and is involved in other signaling pathways, where it shortens the life span of protein-encoding mRNAs and thus enables fine-tuning. These findings are important to better understand and possibly prevent autoimmune diseases. The protein A20, for example, is known as a protective factor against arthritis. Knockdown of ROQUIN, which results in increased A20 protein expression, may therefore represent an approach to treating this chronic joint inflammation disease.

*RC3H1 post-transcriptionally regulates A20 mRNA and modulates the activity of the IKK/NF-kB pathway
Yasuhiro Murakawa1, Michael Hinz2, Janina Mothes3, Anja Schuetz4,5, Michael Uhl6, Emanuel Wyler1, Tomoharu Yasuda7, Guido Mastrobuoni8, Caroline C. Friedel9, Lars Dölken10, Stefan Kempa8, Marc Schmidt-Supprian11, Nils Blüthgen12,13, Rolf Backofen6, Udo Heinemann4,14, Jana Wolf3, Claus Scheidereit2 & Markus Landthaler1

1 RNA Biology and Posttranscriptional Regulation, Berlin Institute of Medical Systems Biology at the Max-Delbrück Center for Molecular Medicine, 13125 Berlin, Germany.
2 Signal Transduction in Tumor Cells, Max-Delbrück Center for Molecular Medicine, 13125 Berlin, Germany.
3 Mathematical Modelling of Cellular Processes, Max-Delbrück Center for Molecular Medicine, 13125 Berlin, Germany.
4 Macromolecular Structure and Interaction, Max 97078-Delbrück Center for Molecular Medicine, 13125 Berlin, Germany.
5 Helmholtz Protein Sample Production Facility, Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany.
6 Department of Computer Science and Centre for Biological Signalling Studies (BIOSS), Albert-Ludwigs-Universität Freiburg, 79110 Freiburg, Germany.
7 Immune Regulation and Cancer, Max-Delbrück Center for Molecular Medicine, 13125 Berlin, Germany.
8 Integrative Proteomics and Metabolomics Platform, Berlin Institute of Medical Systems Biology at the MaxDelbrück Center for Molecular, 13125 Berlin, Germany.
9 Institut für Informatik, Ludwig-Maximilians-Universität, 80333 München, Germany.
10 Institute for Virology and Immunobiology, University of Würzburg, 97078 Würzburg, Germany.
11 Department of Hematology and Oncology, Technische Universität, 81675 München, Germany.
12 Institute of Pathology, Charité–Universitätsmedizin Berlin, 10117 Berlin, Germany.
13 Integrative Research Institute (IRI) for the Life Sciences and Institute for Theoretical Biology, Humboldt-Universität zu Berlin, 10115 Berlin, Germany.
14 Chemistry and Biochemistry Institute, Freie Universität Berlin, 14195

Contact:
Barbara Bachtler
Press Department
Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC)
Robert-Rössle-Straße 10
13125 Berlin
Germany
Phone: +49 (0) 30 94 06 - 38 96
Fax: +49 (0) 30 94 06 - 38 33
e-mail: presse@mdc-berlin.de
https://www.mdc-berlin.de/en

Barbara Bachtler | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

More articles from Life Sciences:

nachricht Unique genome architectures after fertilisation in single-cell embryos
30.03.2017 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

NASA laser communications to provide Orion faster connections

30.03.2017 | Physics and Astronomy

Reusable carbon nanotubes could be the water filter of the future, says RIT study

30.03.2017 | Studies and Analyses

Unique genome architectures after fertilisation in single-cell embryos

30.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>