Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rice study decodes genetic circuitry for bacterial spore formation

24.05.2016

Bacterial survival switch triggered by growth rate

A team led by Rice University bioengineering researchers has decoded the mechanism that some bacteria use to make life-or-death decisions during extremely tough times.


A mixed population of starving Bacillus subtilis cells includes both nonsporulating cells (dark blue) and cells that have begun spore formation by dividing asymmetrically into large (yellow) and small (pink) chambers.

Credit: M. Fujita/UH

Deciphering how bacteria respond to stress could yield new clues for combating food spoilage and for controlling food-borne pathogens. The new study was published in Molecular Systems Biology and sheds light on a long-standing debate about one of the field's fundamental questions: What causes stressed-out bacteria to make the drastic move to cease normal functions and form spores?

"What people in our field have long wondered is, How do spore-forming bacteria like Bacillus make this decision?" said study co-author Oleg Igoshin, associate professor of bioengineering at Rice and a senior investigator at Rice's Center for Theoretical Biological Physics (CTBP). "Is there a specific biochemical trigger that activates one of the network proteins or is sporulation more of a general physiological response?"

To form a hard-shelled spore, which can survive for years without food, the organism must pour its energy into sporulation. Becoming a spore too soon can lead to death by competition -- from neighbors that keep multiplying -- but delaying the decision can lead to death by starvation before the spore is complete.

"It's a high-stakes decision, which suggests that the decision mechanism has come about through intense evolutionary pressure," Igoshin said. "It's also possible that organisms have adopted this same mechanism to make other critical decisions."

B. subtilis is a common soil bacteria and a well-known survivor. It isn't harmful to humans and is even used as a probiotic in some traditional foods. It is so good at forming spores that it's the model organism of choice for biologists who study sporulation.

Almost a decade ago, Igoshin, a computational biologist, began studying the regulatory genes that B. subtilis uses to make sporulation decisions. He and members of his lab interpret the work of experimental collaborators and develop computer simulations to decipher the workings of the regulatory network, such as the switches, feedback loops and signal amplifiers, that B. subtilis uses to make its decision.

In 2012 Igoshin and graduate student Jatin Narula showed how the regulatory network employs a series of nested "feed-forward" loops to filter signal noise, and in 2015 they revealed the network's timing mechanism, a circuit that uses the organism's clock-like DNA replication cycle.

In the new study, which builds upon the 2015 work, Narula, Igoshin and collaborators used their computer model to show how a general physiological cue -- the slowdown of cellular growth -- can trigger B. subtilis' sporulation decisions. Igoshin said the sporulation network is very sensitive to the concentration of a key protein that the cell produces at an essentially constant rate. During starvation, when the cell's growth rate slows, the concentration of this protein builds up, and the bacteria are more likely to form spores. The theoretical work at Rice was experimentally tested in the lab of co-author Gürol Süel of the University of California at San Diego.

Experiments performed by two graduate students in Süel's lab, Anna Kuchina and Fang Zhang, confirmed the main model prediction: Only cells that slow down their growth beyond a threshold value proceed to sporulation. The experimental data indicated that the amount of sporulation network proteins -- but not the activity of the proteins -- was modulated by cell growth, a finding that contradicts the theory that there is a specific biochemical trigger for sporulation.

Igoshin said the finding has important implications for food safety and general microbiology.

"Sporulation by some of the close relatives of B. subtilis is a big hassle for the food-preservation industry because many of those spores can survive boiling temperatures," Igoshin said. "To kill those spores, you need to apply both heat and high pressure. So people have been looking for other methods to inhibit sporulation. If sporulation was triggered by a specific molecule, then perhaps a drug could be found to block that molecule, but our research suggests that sporulation is a general physiological response and that food safety engineers will need to look for other methods of control.

"Moreover, there is a good chance that this mechanism controls key decisions in other bacterial species," he said. "It ties to very basic bacterial physiology, and as a result, I think it may be universal."

###

Masaya Fujita of the University of Houston is also a co-author of the study. The research was supported by the National Science Foundation, the National Institutes of Health and the Howard Hughes Medical Institute.

The DOI of the Molecular Systems Biology paper is: 10.15252/msb.20156691

A copy of the paper is available at: http://msb.embopress.org/cgi/doi/10.15252/msb.20156691

Related B. subtilis research from Rice:

Bacteria use DNA replication to time key decision -- July 9, 2015

Deciphering bacterial doomsday decisions -- Nov. 26, 2012

Stem cells: in search of a master controller -- May 7, 2010

Are sacrificial bacteria altruistic or just unlucky? -- April 16, 2008

This release can be found online at news.rice.edu.

Follow Rice News and Media Relations on Twitter @RiceUNews.

Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation's top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is home to the Baker Institute for Public Policy. With 3,910 undergraduates and 2,809 graduate students, Rice's undergraduate student-to-faculty ratio is 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice is ranked No. 1 for best quality of life and for lots of race/class interaction by the Princeton Review. Rice is also rated as a best value among private universities by Kiplinger's Personal Finance. To read "What they're saying about Rice," go to http://tinyurl.com/RiceUniversityoverview.

Media Contact

David Ruth
david@rice.edu
713-348-6327

 @RiceUNews

http://news.rice.edu 

David Ruth | EurekAlert!

More articles from Life Sciences:

nachricht Researchers develop eco-friendly, 4-in-1 catalyst
25.04.2017 | Brown University

nachricht Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017
25.04.2017 | Laser Zentrum Hannover e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>