Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Results Challenge Conventional Wisdom About Where the Brain Begins Processing Visual Information

04.03.2015

Neuroscientists generally think of the front end of the human visual system as a simple light detection system: The patterns produced when light falls on the retina are relayed to the visual cortex at the rear of the brain, where all of the “magic” happens that transforms these patterns into the three-dimensional world view that we perceive with our mind’s eye.

Now, however, a brain imaging study – published online by the journal Nature Neuroscience on Mar. 2 – challenges this basic assumption. Using high-resolution functional magnetic resonance imaging (fMRI), a team of researchers from Vanderbilt and Boston universities, have discovered that more complex processing occurs in the initial stages of the visual system than previously thought.


Tong Lab, Vanderbilt University

Localization of the human lateral geniculate nucleus, using high-resolution functional MRI (orange) and anatomical MRI (green).

Specifically, they have found evidence of processing in the human lateral geniculate nucleus (LGN), a small node in the thalamus in the middle of the brain that relays nerve impulses from the retina to the primary visual cortex.

An important function of the visual cortex is the processing of rudiments of shape, the angles of lines and edges, which are important for defining the outlines of objects. The researchers found that the human LGN is also sensitive to the orientation of lines and that this effect is enhanced when a person simply pays attention to the orientations in an image.

“Our results demonstrate that even the simplest brain structures may play a fundamental role in complex neural processes of perception and attention,” said Frank Tong, professor of psychology at Vanderbilt, who conducted the study with postdoctoral fellow Michael Pratte and Sam Ling at Boston University.

“They also highlight how higher cortical areas can influence and modulate how we see by modifying the responses of neurons at the earliest stages in the visual pathway through feedback connections.”

“The findings challenge the conventional wisdom about how and where in the brain the processing of visual orientation information first occurs,” commented Michael A. Steinmetz, acting director of the Division of Extramural Research at the National Eye Institute, which provided funding for the study.

“The research also underscores the concept that the perception of visual stimuli evolves from dynamic processes in widely distributed networks in the brain.”

The research was supported by National Institutes of Health grants R01 EY01782 and R01 EB000461 and NIH Fellowship F32-EY022569.

Contact Information
David Salisbury
Senior Research Writer
david.f.salisbury@vanderbilt.edu
Phone: 615-343-6803
Mobile: 615-715-6842

David Salisbury | Vanderbilt University

More articles from Life Sciences:

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

nachricht How herpesviruses win the footrace against the immune system
26.05.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>