Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Track the Neural Circuits Driving a Fly’s Choice of a Mate

14.08.2015

If you’ve ever found a banana overtaken by a swarm of tiny flies, you were in fact witnessing an orgy of amorous Drosophila melanogaster. These trespassers engage in fervent courtship and mating atop ripe fruits, and the sex is anything but casual. In particular, male flies are very precise in choosing whom to court — a complex and intuitive decision that has fascinated scientists for more than a century.

Now, a team of Rockefeller University researchers has explored in detail how the wiring of the male fly brain enables him to assess the suitability of a potential partner and instinctively decide whether to pursue or abandon her. In a recent study, they traced the neural circuits that convey signals from a fly’s sense organs into higher brain areas and make him able to integrate different features of a potential partner. The research, published in Neuron on August 13, offers new glimpses into the biological basis of decision making.


Laboratory of Neurophysiology and Behavior/The Rockefeller University

Recent research explains how the brain of a Drosophila male integrates taste and smell signals as he assesses potential mating partners. This image shows the convergence of two groups of nerve cells, one responding to a smell pheromone (green) and the other carrying taste-pheromone signals (red).

Before an ardent male Drosophila starts courting a female, he taps her with his front leg. “This allows him to taste the pheromones she carries on her waxy cuticle and thereby tell whether she’s appropriate and likely to be receptive to his courtship advances,” explains senior author Vanessa Ruta, Gabrielle H. Reem and Herbert J. Kayden Assistant Professor and head of the Laboratory of Neurophysiology and Behavior.

If the female passes the test, the male starts trotting after her with one wing off to his side, and by vibrating the wing he sings her a courtship song. Soon after — if the object of his serenade allows it — he mounts her to couple.

Earlier research has shown that a type of brain cell called a P1 neuron plays an important role in the male fly’s courtship decision. Until now, however, scientists knew little about how this cell population receives different types of sensory information and integrates it to produce a behavioral switch.

In their current study, the researchers show that P1 neurons receive input from at least three other nerve cell groups that transmit different — and sometimes contradictory — inputs. On the one hand, if the male tastes certain pheromones on the female, his arousal is triggered. On the other hand, he may simultaneously receive off-putting odor or taste signals from the female if she has mated before or belongs to a different species (or even if it turns out that the alleged female in fact is a male, which can happen).

“The beautiful thing about this system is that P1 neurons integrate all this different information, both taste and smell,” Ruta says. “Some information is exciting, some is suppressing, and his brain can combine it to form a behavioral choice.”

In one set of experiments, the researchers introduced male Drosophila to different potential partners, and monitored the activation of their P1 neurons under the microscope. “We brought in appropriate females as well as ones that had mated before, other males, and females of different Drosophila subspecies,” says postdoctoral fellow Josie Clowney, the study’s first author. “He will only court virgin females of his own species, and it’s very clear just from looking at the activity of the P1 neurons that he can tell who to mate with by both tasting and smelling the other fly.”

The researchers observed that the P1 neurons get activated only when the male tastes and smells a female that carry the correct pheromones. They then mapped the neural pathways that bring taste and smell signals into the fly’s brain, and found that these circuits come together and are integrated by P1 neurons themselves.

Ruta notes that research into Drosophila courtship behavior can provide important clues about how the human brain functions. “Though the Drosophila brain is a lot simpler than ours, there are basic similarities,” she says. “We are constantly making decisions after evaluating and weighing different sensory signals in the environment, some of them conflicting. The sign at a crosswalk on the corner says ‘walk’ but we see a cab barreling through—do we proceed or do we stay?

“By peering into the workings of the simpler fly brain,” Ruta adds, “we hope to better understand the basic architecture of neural circuits that integrate and assess different sensory information.”

Contact Information
Wynne Parry
Science Writer
wparry@rockefeller.edu
Phone: 212-327-7789

Wynne Parry | newswise
Further information:
http://www.rockefeller.edu

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>