Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Track the Neural Circuits Driving a Fly’s Choice of a Mate

14.08.2015

If you’ve ever found a banana overtaken by a swarm of tiny flies, you were in fact witnessing an orgy of amorous Drosophila melanogaster. These trespassers engage in fervent courtship and mating atop ripe fruits, and the sex is anything but casual. In particular, male flies are very precise in choosing whom to court — a complex and intuitive decision that has fascinated scientists for more than a century.

Now, a team of Rockefeller University researchers has explored in detail how the wiring of the male fly brain enables him to assess the suitability of a potential partner and instinctively decide whether to pursue or abandon her. In a recent study, they traced the neural circuits that convey signals from a fly’s sense organs into higher brain areas and make him able to integrate different features of a potential partner. The research, published in Neuron on August 13, offers new glimpses into the biological basis of decision making.


Laboratory of Neurophysiology and Behavior/The Rockefeller University

Recent research explains how the brain of a Drosophila male integrates taste and smell signals as he assesses potential mating partners. This image shows the convergence of two groups of nerve cells, one responding to a smell pheromone (green) and the other carrying taste-pheromone signals (red).

Before an ardent male Drosophila starts courting a female, he taps her with his front leg. “This allows him to taste the pheromones she carries on her waxy cuticle and thereby tell whether she’s appropriate and likely to be receptive to his courtship advances,” explains senior author Vanessa Ruta, Gabrielle H. Reem and Herbert J. Kayden Assistant Professor and head of the Laboratory of Neurophysiology and Behavior.

If the female passes the test, the male starts trotting after her with one wing off to his side, and by vibrating the wing he sings her a courtship song. Soon after — if the object of his serenade allows it — he mounts her to couple.

Earlier research has shown that a type of brain cell called a P1 neuron plays an important role in the male fly’s courtship decision. Until now, however, scientists knew little about how this cell population receives different types of sensory information and integrates it to produce a behavioral switch.

In their current study, the researchers show that P1 neurons receive input from at least three other nerve cell groups that transmit different — and sometimes contradictory — inputs. On the one hand, if the male tastes certain pheromones on the female, his arousal is triggered. On the other hand, he may simultaneously receive off-putting odor or taste signals from the female if she has mated before or belongs to a different species (or even if it turns out that the alleged female in fact is a male, which can happen).

“The beautiful thing about this system is that P1 neurons integrate all this different information, both taste and smell,” Ruta says. “Some information is exciting, some is suppressing, and his brain can combine it to form a behavioral choice.”

In one set of experiments, the researchers introduced male Drosophila to different potential partners, and monitored the activation of their P1 neurons under the microscope. “We brought in appropriate females as well as ones that had mated before, other males, and females of different Drosophila subspecies,” says postdoctoral fellow Josie Clowney, the study’s first author. “He will only court virgin females of his own species, and it’s very clear just from looking at the activity of the P1 neurons that he can tell who to mate with by both tasting and smelling the other fly.”

The researchers observed that the P1 neurons get activated only when the male tastes and smells a female that carry the correct pheromones. They then mapped the neural pathways that bring taste and smell signals into the fly’s brain, and found that these circuits come together and are integrated by P1 neurons themselves.

Ruta notes that research into Drosophila courtship behavior can provide important clues about how the human brain functions. “Though the Drosophila brain is a lot simpler than ours, there are basic similarities,” she says. “We are constantly making decisions after evaluating and weighing different sensory signals in the environment, some of them conflicting. The sign at a crosswalk on the corner says ‘walk’ but we see a cab barreling through—do we proceed or do we stay?

“By peering into the workings of the simpler fly brain,” Ruta adds, “we hope to better understand the basic architecture of neural circuits that integrate and assess different sensory information.”

Contact Information
Wynne Parry
Science Writer
wparry@rockefeller.edu
Phone: 212-327-7789

Wynne Parry | newswise
Further information:
http://www.rockefeller.edu

More articles from Life Sciences:

nachricht What happens in the cell nucleus after fertilization
06.12.2016 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Speed data for the brain’s navigation system

06.12.2016 | Health and Medicine

What happens in the cell nucleus after fertilization

06.12.2016 | Life Sciences

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>