Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers shed new light on the genetics of memory performance

26.11.2014

In the largest study of the genetics of memory ever undertaken, an international researcher team including scientists from Boston University School of Medicine (BUSM), have discovered two common genetic variants that are believed to be associated with memory performance. The findings, which appear in the journal Biological Psychiatry, are a significant step towards better understanding how memory loss is inherited.

Longer life spans and the increased prevalence of memory impairment and dementia world-wide underscore the critical public health importance of efforts aimed at deciphering the underlying mechanisms of human memory.

The Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) consortium was developed to facilitate the study of the entire genome through pooling of data from research centers all across the world. Nearly 30,000 participants who did not have dementia were included in the study.

Each participant completed memory tests, such as word recall, and their entire genome was genotyped. Using sophisticated statistical analysis, the genome was examined for segments that were associated with low memory scores.

The researchers found genetic variants near the Apolipoprotein E gene, known to harbor an increased risk of dementia (especially Alzheimer disease), were associated with poorer memory performance, mostly so in the oldest participants and for the short story recall. In a sub-study with post-mortem brain samples, participants with an increasing load of memory risk variants also had more pathological features of Alzheimer disease, perhaps reflecting in some instances early pre-clinical stages of the disease.

According to the researchers two additional regions of the genome, pointing to genes involved in immune response, were associated with the ability to recall word lists, providing new support for an important role of immune system dysfunction in age-related memory decline.

"Interestingly genetic variants associated with memory performance also predicted altered levels of expression of certain genes in the hippocampus, a key region of the brain for the consolidation of information. These were mainly genes involved in the metabolism of ubiquitin that plays a pivotal role in protein degradation," explained lead author Stéphanie Debette, MD, PhD, adjunct associate professor of neurology at BUSM.

This unprecedented world-wide collaboration has generated novel important hypotheses on the biological underpinnings of memory decline in old age, however the researchers caution that more research is clearly needed to confirm these findings. "The differential associations according to memory test characteristics and age should be accounted for in future studies. Exploring other types of genetic variation, including rare variants and epigenetic modifications, will be crucial to decipher the full spectrum of memory heritability," added Debette.

This study was funded by the National Heart, Lung and Blood Institute's (NHLBI) Framingham Heart Study, the National Institute of Neurological Disorders and Stroke and the National Institute of Aging (NIA) AG033193, 081220 and U0149505 (Seshadri) and NHLBI HL096917 (Mosley).

Gina DiGravio | EurekAlert!
Further information:
http://www.bmc.org/

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>