Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers report in "Nature Chemistry" on cell-permeable nanobodies

19.07.2017

Scientists at the Technische Universität Darmstadt, Ludwig Maximilians University (LMU) Munich and the Leibniz Institute for Molecular Pharmacology (FMP) have managed to introduce tiny antibodies into living cells. The researchers now report on the synthesis and applications for these nanobodies in "Nature Chemistry".

Antibodies are one of the main weapons of our immune system. They dock to viruses, bacteria and other invaders that course through our blood, and thereby render them harmless. Antibodies also play a key role in the diagnosis and treatment of diseases and in research.


Ring peptides open the cell membrane door allowing antibodies and other therapeutic agents to enter cells.

Christoph Hohmann, Nanosystems Initiative Munich (NIM)

"One clear limitation is that due to their size and various other factors, antibodies are unable to permeate living cells," emphasises M. Cristina Cardoso, Professor of Cell Biology and Epigenetics in the Department of Biology at the TU Darmstadt.

Working in close collaboration with the research group led by Christian P. R. Hackenberger at the FMP Berlin, Professor of Chemical Biology at the Humboldt University of Berlin, the inter-disciplinary team has now, for the first time, managed to permeate living cells with small antibodies, also called nanobodies, and observe them microscopically. Medicine has extremely high hopes for these tiny antibodies. Although they do not occur in the human body, they have been found in camels and in cartilaginous fish.

"In order to open up the path into the cell for the nanobodies, we decorated them chemically with cyclic cell-permeating peptides that effectively act as keys to the direct permeation through the cell membrane into the cells," explains Christian Hackenberger. As the researchers report in the current issue of the renowned scientific journal "Nature Chemistry", the key peptides are either coupled stably to the nanobodies or, more loosely, so that the connection is dissolved on the inside of the cell.

The scientists successfully permeated living mouse and human cells with nanoantibodies, and examined their benefits. Cell-permeable nanobodies are suited both to the recognition and manipulation of antigens and to the analysis of protein-protein interactions. The researchers were able to observe the interaction between the tumour inhibitor p53 and its counterpart, protein HDM2, using the nanobodies and special fluorescent markings. This interaction plays an important part in the development of cancer.

Nanobodies are also highly promising medically because they are able to transport proteins to living cells. The symptoms of Rett syndrome, for instance, a genetic disease with aspects of autism, could possibly be reduced by the protein Mecp2. The researchers permeated mouse cells with Mecp2 bound to nanobodies, and were able to prove that the protein was still intact and it reached its target in the cell.

According to the report in "Nature Chemistry", the cell-permeable nanobodies are general tools that deliver therapeutically relevant proteins into living cells. This opens up a new door to treatments for diseases that have so far been untreatable.

The work by the researchers from Darmstadt, Berlin and Munich was made possible by the DFG priority programme 1623, which deals with the synthesis of functionalized proteins.

Publication:
“Cell-permeable nanobodies for targeted immunolabelling and antigen manipulation in living cells“; online:
http://dx.doi.org/10.1038/nchem.2811

Contact:
Prof. Dr. M. Cristina Cardoso
TU Darmstadt Department of Biology
Tel.: +49-6151 16-21882
E-Mail: Cardoso@bio.tu-darmstadt.de

Prof. Dr. Christian Hackenberger
Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP)
Tel: +49-30 94793-181
Email: hackenbe@fmp-berlin.de

Weitere Informationen:

http://dx.doi.org/10.1038/nchem.2811

Claudia Staub | idw - Informationsdienst Wissenschaft
Further information:
http://www.tu-darmstadt.de/

More articles from Life Sciences:

nachricht More genes are active in high-performance maize
19.01.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht How plants see light
19.01.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>