Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers produce two bio-fuels from a single algae

29.01.2015

A common algae commercially grown to make fish food holds promise as a source for both biodiesel and jet fuel, according to a new study published in the journal Energy & Fuels.

The researchers, led by Greg O'Neil of Western Washington University and Chris Reddy of Woods Hole Oceanographic Institution, exploited an unusual and untapped class of chemical compounds in the algae to synthesize two different fuel products, in parallel, a from a single algae. "It's novel," says O'Neil, the study's lead author. "It's far from a cost-competitive product at this stage, but it's an interesting new strategy for making renewable fuel from algae." Algae contain fatty acids that can be converted into fatty acid methyl esters, or FAMEs, the molecules in biodiesel. For their study, O'Neil, Reddy, and colleagues targeted a specific algal species called Isochrysis for two reasons: First, because growers have already demonstrated they can produce it in large batches to make fish food. Second, because it is among only a handful of algal species around the globe that produce fats called alkenones. These compounds are composed of long chains with 37 to 39 carbon atoms, which the researchers believed held potential as a fuel source.


Researchers use gas chromatography to separate algal compounds with biofuel potential. They usually target fatty acid methyl esters. But Isochrysis also contains alkenones, which emerge after most researchers stop looking.

Credit: Eric Taylor, Woods Hole Oceanographic Institution

Biofuel prospectors may have dismissed Isochrysis because its oil is a dark, sludgy solid at room temperature, rather than a clear liquid that looks like cooking oil. The sludge is a result of the alkenones in Isochrysis -- precisely what makes it a unique source of two distinct fuels.

Alkenones are well known to oceanographers because they have a unique ability to change their structure in response to water temperature, providing oceanographers with a biomarker to extrapolate past sea surface temperatures. But biofuel prospectors were largely unaware of alkenones. "They didn't know that Isochrysis makes these unusual compounds because they're not oceanographers," says Reddy, a marine chemist at WHOI.

Reddy and O'Neil began their collaboration first by making biodiesel from the FAMEs in Isochrysis. Then they had to devise a method to separate the FAMEs and alkenones in order to achieve a free-flowing fuel.The method added steps to the overall biodiesel process, but it supplied a superior quality biodiesel, as well as "an alkenone-rich . . . fraction as a potential secondary product stream," the authors write.

"The alkenones themselves, with long chains of 37 to 39 carbons, are much too big to be used for jet fuel," says O'Neil. But the researchers used a chemical reaction called olefin metathesis (which earned its developers the Nobel Prize in 2005). The process cleaved carbon-carbon double bonds in the alkenones, breaking the long chains into pieces with only 8 to 13 carbons. "Those are small enough to use for jet fuel," O'Neil says.

The scientists believe that by producing two fuels--biodiesel and jet fuel--from a single algae, their findings hold some promise for future commercialization. They stress that this is a first step with many steps to come, but they are encouraged by the initial result.

"It's scientifically fascinating and really cool," Reddy says. "This algae has got much greater potential, but we are in the nascent stages."

Among their next steps is to try to produce larger quantities of the fuels from Isochrysis, but they are also exploring additional co-products from the algae. The team believes there are a lot of other potential products that could be made from alkenones.

"Petroleum products are everywhere--we need a lot of different raw materials if we hope to replace them," says O'Neil. "Alkenones have a lot of potential for different purposes, so it's exciting."

This research was funded by the National Science Foundation, the Massachusetts Clean Energy Center, and Woods Hole Oceanographic Institution.

You can read more about the research in Oceanus Magazine.

The Woods Hole Oceanographic Institution is a private, non-profit organization on Cape Cod, Mass., dedicated to marine research, engineering, and higher education. Established in 1930 on a recommendation from the National Academy of Sciences, its primary mission is to understand the ocean and its interaction with the Earth as a whole, and to communicate a basic understanding of the ocean's role in the changing global environment. For more information, please visit http://www.whoi.edu.

Media Contact

WHOI Media Office
media@whoi.edu
508-289-3340

 @WHOImedia

http://www.whoi.edu

WHOI Media Office | EurekAlert!

Further reports about: Oceanographic WHOI Woods Hole Oceanographic bio-fuels fuels species temperature unusual

More articles from Life Sciences:

nachricht The dense vessel network regulates formation of thrombocytes in the bone marrow
25.07.2017 | Rudolf-Virchow-Zentrum für Experimentelle Biomedizin der Universität Würzburg

nachricht Fungi that evolved to eat wood offer new biomass conversion tool
25.07.2017 | University of Massachusetts at Amherst

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA mission surfs through waves in space to understand space weather

25.07.2017 | Physics and Astronomy

Strength of tectonic plates may explain shape of the Tibetan Plateau, study finds

25.07.2017 | Earth Sciences

The dense vessel network regulates formation of thrombocytes in the bone marrow

25.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>