Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers produce two bio-fuels from a single algae

29.01.2015

A common algae commercially grown to make fish food holds promise as a source for both biodiesel and jet fuel, according to a new study published in the journal Energy & Fuels.

The researchers, led by Greg O'Neil of Western Washington University and Chris Reddy of Woods Hole Oceanographic Institution, exploited an unusual and untapped class of chemical compounds in the algae to synthesize two different fuel products, in parallel, a from a single algae. "It's novel," says O'Neil, the study's lead author. "It's far from a cost-competitive product at this stage, but it's an interesting new strategy for making renewable fuel from algae." Algae contain fatty acids that can be converted into fatty acid methyl esters, or FAMEs, the molecules in biodiesel. For their study, O'Neil, Reddy, and colleagues targeted a specific algal species called Isochrysis for two reasons: First, because growers have already demonstrated they can produce it in large batches to make fish food. Second, because it is among only a handful of algal species around the globe that produce fats called alkenones. These compounds are composed of long chains with 37 to 39 carbon atoms, which the researchers believed held potential as a fuel source.


Researchers use gas chromatography to separate algal compounds with biofuel potential. They usually target fatty acid methyl esters. But Isochrysis also contains alkenones, which emerge after most researchers stop looking.

Credit: Eric Taylor, Woods Hole Oceanographic Institution

Biofuel prospectors may have dismissed Isochrysis because its oil is a dark, sludgy solid at room temperature, rather than a clear liquid that looks like cooking oil. The sludge is a result of the alkenones in Isochrysis -- precisely what makes it a unique source of two distinct fuels.

Alkenones are well known to oceanographers because they have a unique ability to change their structure in response to water temperature, providing oceanographers with a biomarker to extrapolate past sea surface temperatures. But biofuel prospectors were largely unaware of alkenones. "They didn't know that Isochrysis makes these unusual compounds because they're not oceanographers," says Reddy, a marine chemist at WHOI.

Reddy and O'Neil began their collaboration first by making biodiesel from the FAMEs in Isochrysis. Then they had to devise a method to separate the FAMEs and alkenones in order to achieve a free-flowing fuel.The method added steps to the overall biodiesel process, but it supplied a superior quality biodiesel, as well as "an alkenone-rich . . . fraction as a potential secondary product stream," the authors write.

"The alkenones themselves, with long chains of 37 to 39 carbons, are much too big to be used for jet fuel," says O'Neil. But the researchers used a chemical reaction called olefin metathesis (which earned its developers the Nobel Prize in 2005). The process cleaved carbon-carbon double bonds in the alkenones, breaking the long chains into pieces with only 8 to 13 carbons. "Those are small enough to use for jet fuel," O'Neil says.

The scientists believe that by producing two fuels--biodiesel and jet fuel--from a single algae, their findings hold some promise for future commercialization. They stress that this is a first step with many steps to come, but they are encouraged by the initial result.

"It's scientifically fascinating and really cool," Reddy says. "This algae has got much greater potential, but we are in the nascent stages."

Among their next steps is to try to produce larger quantities of the fuels from Isochrysis, but they are also exploring additional co-products from the algae. The team believes there are a lot of other potential products that could be made from alkenones.

"Petroleum products are everywhere--we need a lot of different raw materials if we hope to replace them," says O'Neil. "Alkenones have a lot of potential for different purposes, so it's exciting."

This research was funded by the National Science Foundation, the Massachusetts Clean Energy Center, and Woods Hole Oceanographic Institution.

You can read more about the research in Oceanus Magazine.

The Woods Hole Oceanographic Institution is a private, non-profit organization on Cape Cod, Mass., dedicated to marine research, engineering, and higher education. Established in 1930 on a recommendation from the National Academy of Sciences, its primary mission is to understand the ocean and its interaction with the Earth as a whole, and to communicate a basic understanding of the ocean's role in the changing global environment. For more information, please visit http://www.whoi.edu.

Media Contact

WHOI Media Office
media@whoi.edu
508-289-3340

 @WHOImedia

http://www.whoi.edu

WHOI Media Office | EurekAlert!

Further reports about: Oceanographic WHOI Woods Hole Oceanographic bio-fuels fuels species temperature unusual

More articles from Life Sciences:

nachricht What happens in the cell nucleus after fertilization
06.12.2016 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Simple processing technique could cut cost of organic PV and wearable electronics

06.12.2016 | Materials Sciences

3-D printed kidney phantoms aid nuclear medicine dosing calibration

06.12.2016 | Medical Engineering

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>