Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Researchers Learn to Measure the Aging Process in Young Adults


Biomarkers show some young adults are aging three times faster than others

An international research team from the US, UK, Israel and New Zealand has found a way to measure the aging process in young adults  a much younger population than is usually tested in aging studies. Working with study participants age 26 to 38, the scientists identified factors that can determine whether people are aging faster or slower than their peers, and to quantify both their biological age and how quickly they are aging.

Measuring the aging process in young adults: Dr. Salomon Israel at the Hebrew University of Jerusalem’s Department of Psychology. (Photo: Hebrew University)

In a paper appearing today in the Proceedings of the National Academy of Sciences, the researchers showed that even among young adults, a person's biological age may differ by many years from their actual chronological age. For example, among 38-year-olds studied, the participants' biological age was found to range from under 30 years old, to nearly 60 years old. That means that some participants' biological age was more than 20 years older than their birth certificates indicated.

Measuring the aging process in young adults: Dr. Salomon Israel at the Hebrew University of Jerusalem’s Department of Psychology. (Photo: Hebrew University)
"This research shows that age-related decline is already happening in young adults who are decades away from developing age-related diseases, and that we can measure it," said Dr. Salomon Israel, a researcher and senior lecturer in the Hebrew University of Jerusalem's Department of Psychology, and a co-author of the study. Dr. Israel joined the Hebrew University's faculty in January 2015 after completing a postdoctoral fellowship in psychology of neuroscience at Duke University.

The data comes from the Dunedin Study, a long-term health study in New Zealand that seeks clues to the aging process. The study tracks over a thousand people born in 1972-73 from birth to the present, using health measures like blood pressure, liver function, and interviews.

As part of their regular reassessment of the study population in 2011, the team measured the functions of kidneys, liver, lungs, metabolic and immune systems. They also measured HDL cholesterol, cardiorespiratory fitness, lung function and the length of the telomeres -- protective caps at the end of chromosomes that have been found to shorten with age. The study also measures dental health and the condition of the tiny blood vessels at the back of the eyes, a proxy for the brain’s blood vessels.

Based on a subset of these biomarkers, the research team determined a biological age for each participant. The researchers then looked at 18 biomarkers that were measured when the participants were age 26, and again when they were 32 and 38. From this, they drew a slope for each variable, and then the 18 slopes were added for each study subject to determine that individual’s pace of aging.

Most participants clustered around an aging rate of one year per year, but others were found to be aging as fast as three years per chronological year. Many were aging at zero years per year, in effect staying younger than their age.

As the team expected, those who were biologically older at age 38 also appeared to have been aging at a faster pace. A biological age of 40, for example, meant that person was aging at a rate of 1.2 years per year over the 12 years the study examined.

Study members who appeared to be more advanced in biological aging scored worse on tests typically given to people over 60, including tests of balance and coordination and solving unfamiliar problems. The biologically older individuals also reported having more difficulties with physical functioning than their peers, such as walking up stairs.

As an added measure, the researchers asked Duke University undergraduate students to assess facial photos of the study participants taken at age 38 and rate how young or old they appeared. Again, the participants who were biologically older on the inside also appeared older to the college students.

“We set out to measure aging in these relatively young people,” said Dan Belsky, an assistant professor of geriatrics in Duke University’s Center for Aging and the study's first author. “Most studies of aging look at seniors, but if we want to be able to prevent age-related disease, we’re going to have to start studying aging in young people."

“That gives us some hope that medicine might be able to slow aging and give people more healthy active years,” said Terrie Moffitt, the Nannerl O. Keohane professor of psychology and neuroscience at Duke and the study's senior author.

The ultimate goal is to be able to intervene in the aging process itself, rather than addressing killers like heart disease or cancer in isolation.

"Accelerated aging in young adults predicts the symptoms of advanced aging that we see in older adults: deficits in cognitive and physical functioning, feelings of ill-health, and even an older appearance. The ability to measure how quickly a young person is aging may in the future enable us to engage in interventions that slow aging or target specific diseases,” the Hebrew University’s Dr. Israel said.

The research was funded by the New Zealand Health Research Council, U.S. National Institute on Aging, UK Medical Research Council, Jacobs Foundation and the Yad Hanadiv Rothschild Foundation.

CITATION: “Quantification of biological aging in young adults,” Daniel Belsky, Avshalom Caspi, et al. PNAS, July 7, 2015. DOI: 10.1073/pnas.1506264112 (link).

To contact Dr. Salomon Israel:

For more information:

Dov Smith
Hebrew University of Jerusalem
+972-2-5882844 / +972-54-8820860

Dov Smith | Hebrew University of Jerusalem
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>