Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Researchers from Halle discover genetic basis for social behaviour in bees


The social behaviour of bees depends on the highly complex interactions of multiple gene groups rather than on one single gene. This has been established by an international team of researchers that includes scientists from Martin Luther University Halle-Wittenberg (MLU). The researchers analysed and compared ten bee genomes in order to identify a common genetic basis for the social behaviour of different species of bees. Their research findings were published last evening in the renowned journal “Science”.

In the study, scientists from Europe, Asia and the Americas compared the genomes of ten species of bees that exhibit different degrees of social behaviour. "While several wild bees live their entire lives as solitary insects, other bees live in colonies with highly complex social structures, allowing for efficient division of labour," explains Professor Robin Moritz from the Institute of Biology at MLU.

The University of Illinois at Urbana-Champaign spearheaded the study in which numerous international research institutions including MLU also participated. The study's findings were published on Thursday evening in "Science". In the study, the scientists used five bee genomes that had already been sequenced, as well as the newly-sequenced genomes of five additional species of bees.

The researchers were astonished to find that the same genes aren't always active in complex social organisations. "There is no single gene that makes a bee social," says Moritz, summing up the study. Instead there are patterns in the regulatory networks that are responsible for the activity of different genes. These networks represent cascades of multiple genes that are switched on or off together: the more complex the bees' social organisation is, the larger is the network of the collectively regulated genes.

The researchers also discovered that, as the degree of social organisation increases, so too does the number of so-called transcription factor binding sites. These binding sites serve as the critical on and off switches for regulating complex gene cascades. Similarly, the methylation of genes also increases with increasing complexity of the social organisation as an additional mechanism to control whether a gene is activated or not.

In their work on the project, Robin Moritz's team of biologists in Halle examined the different bee genomes for so-called "jumping genes". "These DNA segments change position within the genome, in other words, jump to other genes and are able to deactivate them," explains Dr Michael Lattorff, who works at the Institute of Biology alongside Moritz.

The researchers found less of these elements in the socially complex bee species. It has yet to be conclusively determined whether this is the reason for their complex social organisation, or a result of it. Professor Martin Hasselmann from the University of Hohenheim and an alumnus of MLU was also a member of the international team. He and his team mainly looked at the genes involved in determining the gender of bees.

The research group led by Robin Moritz, Michael Lattorff and Martin Hasselmann also participated in other publications that appeared in the scientific journal "Genome Biology". In these studies they examined the genome and sequenced the DNA of the buff-tailed bumblebee (Bombus terrestris) and the common eastern bumblebee (Bombus impatiens), a native of North America. In one publication the researchers compared the DNA of both bumblebees to that of the closely related honeybee. Their other publication analysed the immune system of bumblebees and the genetic basis for their social behaviour.


Kapheim et al. 2015. Genomic Signatures of Evolutionary Transitions from Solitary to Group Living. Science, 14.05.2015; DOI: 10.1126/science.aaa4788

Sadd et al. 2015. The genomes of two key bumblebee species with primitive eusocial organization, Genome Biology,

Barribeau et al. 2015. A depauperate immune repertoire precedes evolution of sociality in bees, Genome Biology,

Manuela Bank-Zillmann | idw - Informationsdienst Wissenschaft
Further information:

Further reports about: Biology DNA Genome Biology bumblebees discover genes genetic basis genomes social behaviour

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>