Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers from Halle discover genetic basis for social behaviour in bees

15.05.2015

The social behaviour of bees depends on the highly complex interactions of multiple gene groups rather than on one single gene. This has been established by an international team of researchers that includes scientists from Martin Luther University Halle-Wittenberg (MLU). The researchers analysed and compared ten bee genomes in order to identify a common genetic basis for the social behaviour of different species of bees. Their research findings were published last evening in the renowned journal “Science”.

In the study, scientists from Europe, Asia and the Americas compared the genomes of ten species of bees that exhibit different degrees of social behaviour. "While several wild bees live their entire lives as solitary insects, other bees live in colonies with highly complex social structures, allowing for efficient division of labour," explains Professor Robin Moritz from the Institute of Biology at MLU.

The University of Illinois at Urbana-Champaign spearheaded the study in which numerous international research institutions including MLU also participated. The study's findings were published on Thursday evening in "Science". In the study, the scientists used five bee genomes that had already been sequenced, as well as the newly-sequenced genomes of five additional species of bees.

The researchers were astonished to find that the same genes aren't always active in complex social organisations. "There is no single gene that makes a bee social," says Moritz, summing up the study. Instead there are patterns in the regulatory networks that are responsible for the activity of different genes. These networks represent cascades of multiple genes that are switched on or off together: the more complex the bees' social organisation is, the larger is the network of the collectively regulated genes.

The researchers also discovered that, as the degree of social organisation increases, so too does the number of so-called transcription factor binding sites. These binding sites serve as the critical on and off switches for regulating complex gene cascades. Similarly, the methylation of genes also increases with increasing complexity of the social organisation as an additional mechanism to control whether a gene is activated or not.

In their work on the project, Robin Moritz's team of biologists in Halle examined the different bee genomes for so-called "jumping genes". "These DNA segments change position within the genome, in other words, jump to other genes and are able to deactivate them," explains Dr Michael Lattorff, who works at the Institute of Biology alongside Moritz.

The researchers found less of these elements in the socially complex bee species. It has yet to be conclusively determined whether this is the reason for their complex social organisation, or a result of it. Professor Martin Hasselmann from the University of Hohenheim and an alumnus of MLU was also a member of the international team. He and his team mainly looked at the genes involved in determining the gender of bees.

The research group led by Robin Moritz, Michael Lattorff and Martin Hasselmann also participated in other publications that appeared in the scientific journal "Genome Biology". In these studies they examined the genome and sequenced the DNA of the buff-tailed bumblebee (Bombus terrestris) and the common eastern bumblebee (Bombus impatiens), a native of North America. In one publication the researchers compared the DNA of both bumblebees to that of the closely related honeybee. Their other publication analysed the immune system of bumblebees and the genetic basis for their social behaviour.

Publications:

Kapheim et al. 2015. Genomic Signatures of Evolutionary Transitions from Solitary to Group Living. Science, 14.05.2015; DOI: 10.1126/science.aaa4788

Sadd et al. 2015. The genomes of two key bumblebee species with primitive eusocial organization, Genome Biology, dx.doi.org/10.1186/s13059-015-0623-3

Barribeau et al. 2015. A depauperate immune repertoire precedes evolution of sociality in bees, Genome Biology, dx.doi.org/10.1186/s13059-015-0628-y

Manuela Bank-Zillmann | idw - Informationsdienst Wissenschaft
Further information:
http://www.uni-halle.de

Further reports about: Biology DNA Genome Biology bumblebees discover genes genetic basis genomes social behaviour

More articles from Life Sciences:

nachricht Biofuel produced by microalgae
28.02.2017 | Tokyo Institute of Technology

nachricht Decoding the genome's cryptic language
27.02.2017 | University of California - San Diego

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Scientists reach back in time to discover some of the most power-packed galaxies

28.02.2017 | Physics and Astronomy

Nano 'sandwich' offers unique properties

28.02.2017 | Materials Sciences

Light beam replaces blood test during heart surgery

28.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>