Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers find beta cell stress could trigger the development of type 1 diabetes

23.03.2012
Study provides important clue in type 1 diabetes; could help scientists identify and validate potential drug targets to alleviate ER stress and preserve beta cell mass in T1D

In type 1 diabetes (T1D), pancreatic beta cells die from a misguided autoimmune attack, but how and why that happens is still unclear. Now, JDRF-funded scientists from the Indiana University School of Medicine have found that a specific type of cellular stress takes place in pancreatic beta cells before the onset of T1D, and that this stress response in the beta cell may in fact help ignite the autoimmune attack. These findings shed an entirely new light into the mystery behind how changes in the beta cell may play a role in the earliest stages of T1D, and adds a new perspective to our understanding how T1D progresses, and how to prevent and treat the disease.

In the study, published in the March 22 issue of the journal Diabetes, the researchers, led by Sarah Tersey, Ph.D., assistant research professor of pediatrics, and Raghavendra Mirmira, M.D., Ph.D., professor of pediatrics and medicine at the Indiana University School of Medicine, show for the first time in a mouse model of T1D that beta cells become stressed early in the disease process, before the animal develops diabetes. In response to the stress, beta cells activate a cell death pathway leading to the loss of beta cell mass in the animal.

In all cells, there is a vital compartment known as the endoplasmic reticulum (ER) where secreted proteins, like insulin, are produced and processed before being released by the cell. Pancreatic beta cells are highly specialized for the production and secretion of insulin and therefore, the ER plays a critical role in their function, making them particularly sensitive to ER stress. The study by Tersey and colleagues show that an alteration of the beta cell ER stress response occurs early in the disease, and if the ER stress is not resolved properly, it can result in defects in insulin secretion, and ultimately death of the beta cell.

"The ER stress in the beta cell has been implicated in type 2 diabetes, but its role in triggering beta cell dysfunction in type 1 diabetes has not been clear until now, which is why these findings are exciting, " said Dr. Mirmira. "Although the paper does not directly address a potential role for ER stress in the development of human T1D, what we observed in the mice is consistent with clinical observations of type 1 diabetes in people where defects in insulin secretion precede overt diabetes."

"We need to look more closely at beta cells and their role in type 1 diabetes because they may be participating in their own demise," said Andrew Rakeman, Ph.D. Senior Scientist of Regeneration for JDRF. "This study shows that beta cell stress is occurring at the earliest stages of the disease process, raising the intriguing possibility that beta cell stress could be part of the trigger for the autoimmune process that leads to type 1 diabetes. This is exciting because it not only teaches us something about the early events in T1D progression, but suggests that drugs or therapeutic strategies that alleviate ER stress might be used to delay progress of the disease, either preventing insulin dependence or preserving beta cell function, improving glucose control and reducing the risk of complications."

About T1D

In T1D, a person's pancreas stops producing enough insulin to survive. People with T1D must currently monitor their blood sugar levels and administer insulin via shots or an insulin pump, multiple times every day. Even vigilant management does not ward against T1D complications such as heart attack, stroke, blindness, and amputation.

About JDRF

JDRF is the leading global organization focused on type 1 diabetes (T1D) research. Driven by passionate, grassroots volunteers connected to children, adolescents, and adults with this disease, JDRF is now the largest charitable supporter of T1D research. The goal of JDRF research is to improve the lives of all people affected by T1D by accelerating progress on the most promising opportunities for curing, better treating, and preventing T1D. JDRF collaborates with a wide spectrum of partners who share this goal.

Since its founding in 1970, JDRF has awarded more than $1.6 billion to diabetes research. Past JDRF efforts have helped to significantly advance the care of people with this disease, and have expanded the critical scientific understanding of T1D. JDRF will not rest until T1D is fully conquered. More than 80 percent of JDRF's expenditures directly support research and research-related education.

Joana Casas | EurekAlert!
Further information:
http://www.jdrf.org

More articles from Life Sciences:

nachricht For a chimpanzee, one good turn deserves another
27.06.2017 | Max-Planck-Institut für Mathematik in den Naturwissenschaften (MPIMIS)

nachricht New method to rapidly map the 'social networks' of proteins
27.06.2017 | Salk Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Touch Displays WAY-AX and WAY-DX by WayCon

27.06.2017 | Power and Electrical Engineering

Drones that drive

27.06.2017 | Information Technology

Ultra-compact phase modulators based on graphene plasmons

27.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>