Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers find beta cell stress could trigger the development of type 1 diabetes

23.03.2012
Study provides important clue in type 1 diabetes; could help scientists identify and validate potential drug targets to alleviate ER stress and preserve beta cell mass in T1D

In type 1 diabetes (T1D), pancreatic beta cells die from a misguided autoimmune attack, but how and why that happens is still unclear. Now, JDRF-funded scientists from the Indiana University School of Medicine have found that a specific type of cellular stress takes place in pancreatic beta cells before the onset of T1D, and that this stress response in the beta cell may in fact help ignite the autoimmune attack. These findings shed an entirely new light into the mystery behind how changes in the beta cell may play a role in the earliest stages of T1D, and adds a new perspective to our understanding how T1D progresses, and how to prevent and treat the disease.

In the study, published in the March 22 issue of the journal Diabetes, the researchers, led by Sarah Tersey, Ph.D., assistant research professor of pediatrics, and Raghavendra Mirmira, M.D., Ph.D., professor of pediatrics and medicine at the Indiana University School of Medicine, show for the first time in a mouse model of T1D that beta cells become stressed early in the disease process, before the animal develops diabetes. In response to the stress, beta cells activate a cell death pathway leading to the loss of beta cell mass in the animal.

In all cells, there is a vital compartment known as the endoplasmic reticulum (ER) where secreted proteins, like insulin, are produced and processed before being released by the cell. Pancreatic beta cells are highly specialized for the production and secretion of insulin and therefore, the ER plays a critical role in their function, making them particularly sensitive to ER stress. The study by Tersey and colleagues show that an alteration of the beta cell ER stress response occurs early in the disease, and if the ER stress is not resolved properly, it can result in defects in insulin secretion, and ultimately death of the beta cell.

"The ER stress in the beta cell has been implicated in type 2 diabetes, but its role in triggering beta cell dysfunction in type 1 diabetes has not been clear until now, which is why these findings are exciting, " said Dr. Mirmira. "Although the paper does not directly address a potential role for ER stress in the development of human T1D, what we observed in the mice is consistent with clinical observations of type 1 diabetes in people where defects in insulin secretion precede overt diabetes."

"We need to look more closely at beta cells and their role in type 1 diabetes because they may be participating in their own demise," said Andrew Rakeman, Ph.D. Senior Scientist of Regeneration for JDRF. "This study shows that beta cell stress is occurring at the earliest stages of the disease process, raising the intriguing possibility that beta cell stress could be part of the trigger for the autoimmune process that leads to type 1 diabetes. This is exciting because it not only teaches us something about the early events in T1D progression, but suggests that drugs or therapeutic strategies that alleviate ER stress might be used to delay progress of the disease, either preventing insulin dependence or preserving beta cell function, improving glucose control and reducing the risk of complications."

About T1D

In T1D, a person's pancreas stops producing enough insulin to survive. People with T1D must currently monitor their blood sugar levels and administer insulin via shots or an insulin pump, multiple times every day. Even vigilant management does not ward against T1D complications such as heart attack, stroke, blindness, and amputation.

About JDRF

JDRF is the leading global organization focused on type 1 diabetes (T1D) research. Driven by passionate, grassroots volunteers connected to children, adolescents, and adults with this disease, JDRF is now the largest charitable supporter of T1D research. The goal of JDRF research is to improve the lives of all people affected by T1D by accelerating progress on the most promising opportunities for curing, better treating, and preventing T1D. JDRF collaborates with a wide spectrum of partners who share this goal.

Since its founding in 1970, JDRF has awarded more than $1.6 billion to diabetes research. Past JDRF efforts have helped to significantly advance the care of people with this disease, and have expanded the critical scientific understanding of T1D. JDRF will not rest until T1D is fully conquered. More than 80 percent of JDRF's expenditures directly support research and research-related education.

Joana Casas | EurekAlert!
Further information:
http://www.jdrf.org

More articles from Life Sciences:

nachricht Discovery of a fundamental limit to the evolution of the genetic code
03.05.2016 | Institute for Research in Biomedicine (IRB Barcelona)

nachricht Perfect imperfection
03.05.2016 | Christian-Albrechts-Universität zu Kiel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nuclear Pores Captured on Film

Using an ultra fast-scanning atomic force microscope, a team of researchers from the University of Basel has filmed “living” nuclear pore complexes at work for the first time. Nuclear pores are molecular machines that control the traffic entering or exiting the cell nucleus. In their article published in Nature Nanotechnology, the researchers explain how the passage of unwanted molecules is prevented by rapidly moving molecular “tentacles” inside the pore.

Using high-speed AFM, Roderick Lim, Argovia Professor at the Biozentrum and the Swiss Nanoscience Institute of the University of Basel, has not only directly...

Im Focus: 2+1 is Not Always 3 - In the microworld unity is not always strength

If a person pushes a broken-down car alone, there is a certain effect. If another person helps, the result is the sum of their efforts. If two micro-particles are pushing another microparticle, however, the resulting effect may not necessarily be the sum their efforts. A recent study published in Nature Communications, measured this odd effect that scientists call “many body.”

In the microscopic world, where the modern miniaturized machines at the new frontiers of technology operate, as long as we are in the presence of two...

Im Focus: Tiny microbots that can clean up water

Researchers from the Max Planck Institute Stuttgart have developed self-propelled tiny ‘microbots’ that can remove lead or organic pollution from contaminated water.

Working with colleagues in Barcelona and Singapore, Samuel Sánchez’s group used graphene oxide to make their microscale motors, which are able to adsorb lead...

Im Focus: ORNL researchers discover new state of water molecule

Neutron scattering and computational modeling have revealed unique and unexpected behavior of water molecules under extreme confinement that is unmatched by any known gas, liquid or solid states.

In a paper published in Physical Review Letters, researchers at the Department of Energy's Oak Ridge National Laboratory describe a new tunneling state of...

Im Focus: Bionic Lightweight Design researchers of the Alfred Wegener Institute at Hannover Messe 2016

Honeycomb structures as the basic building block for industrial applications presented using holo pyramid

Researchers of the Alfred Wegener Institute (AWI) will introduce their latest developments in the field of bionic lightweight design at Hannover Messe from 25...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

The “AC21 International Forum 2016” is About to Begin

27.04.2016 | Event News

Soft switching combines efficiency and improved electro-magnetic compatibility

15.04.2016 | Event News

Grid-Supportive Buildings Give Boost to Renewable Energy Integration

12.04.2016 | Event News

 
Latest News

Quantum Logical Operations Realized with Single Photons

03.05.2016 | Physics and Astronomy

Discovery of a fundamental limit to the evolution of the genetic code

03.05.2016 | Life Sciences

Cavitation aggressive intensity greatly enhanced using pressure at bubble collapse region

03.05.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>