Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers find a key mechanism in the development of nerve cells

01.10.2009
Chaos brews in the brains of newborns: the nerve cells are still bound only loosely to each other.

Under the leadership of Academy Research Fellow Sari Lauri, a team of researchers at the University of Helsinki has been studying for years how a neural network capable of processing information effectively is created out of chaos.

The team has now found a new kind of mechanism that adjusts the functional development of nerve cell contacts. The results were published in early September as the leading article of the esteemed Journal of Neuroscience.

The work carried out by Lauri's team and its partners at the Viikki campus sheds light on a development path that results in some of the large number of early synapses becoming stronger. The researchers found out hat the BDNF growth factor of nerve cells triggers a functional chain which promotes the release of the neurotransmitter glutamate. BDNF enables the release of glutamate by prohibiting the function of kainate receptors which slow down the development of the preforms of the synapses. The activity of the kainate receptors restricts the release of glutamate and the development of synapses into functional nerve cell contacts.

It is noteworthy that the brain of a newborn itself seems to organise its own development. The electrical activity of the waking brain triggers the series of events controlled by the BDNF protein, as a result of which kainate receptor activity disappears in some synapses. The development is based on the considerable plasticity of the developing neural network: it can reshape its structureand function to a large extent.

According to Lauri, the new research results help understand how central nervous system diseases originating in early development are established. The finding also provides researchers with the opportunity to obtain information about the different aspects of endogenous activity of the brain. At the same time, it could be possible to develop new kinds of pharmaceuticals for the treatment of childhood epilepsy, for example.

Lauri's team conducted the research in co-operation with the research teams of Eero Castren and Tomi Taira from the Neuroscience Centre, and the research team of Jari Yli-Kauhaluoma from the Faculty of Pharmacy.

Sari Lauri | EurekAlert!
Further information:
http://www.helsinki.fi

More articles from Life Sciences:

nachricht Fingerprint' technique spots frog populations at risk from pollution
27.03.2017 | Lancaster University

nachricht Parallel computation provides deeper insight into brain function
27.03.2017 | Okinawa Institute of Science and Technology (OIST) Graduate University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>