Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers discover how body's good fat tissue communicates with brain

30.03.2015

Brown fat tissue, the body's "good fat," communicates with the brain through sensory nerves, possibly sharing information that is important for fighting human obesity, such as how much fat we have and how much fat we've lost, according to researchers at Georgia State University.

The findings, published in The Journal of Neuroscience, help to describe the conversation that takes place between the brain and brown fat tissue while brown fat is generating heat.


These are sensory and sympathetic nerves connected to brown fat through the nervous system. Sensory nerves (red/orange) send information from fat to the brain and sympathetic nerves (green/orange) send the signal for fat to be activated or break down.

Credit: Georgia State University

Brown fat is considered "good fat" or "healthy fat" because it burns calories to help generate heat for our bodies and expend energy, while white fat stores energy for later and can increase the risk for health issues, such as diabetes and heart disease. A person with a healthy metabolism has less white fat and an active supply of brown fat.

Studies show that brown fat plays a big role in someone having the capability to burn more energy, becoming a tool to stay trim and fight obesity. Pharmaceutical companies are trying to target brown fat and activate it more, said Johnny Garretson, study author and doctoral student in the Neuroscience Institute and Center for Obesity Reversal at Georgia State.

The study found that when brown fat tissue was activated with a drug that mimics the sympathetic nervous system messages that normally come from the brain, the fat talked back to the brain by activating sensory nerves. The sensory nerves from brown fat increased their activity in response to direct chemical activation and heat generation.

"This is the first time that the function of sensory nerves from brown fat has been examined," Garretson said. "Brown fat is an active organ that's relatively important for metabolism, and we found a new pathway of its communication.

"The study informs us more about the communication between fat and the brain, which is really beneficial for treating human obesity. There is evidence that people with more brown fat have a better metabolism, lower instances of type II diabetes and are trimmer. Knowing how to increase the amount of brown fat activity or increase the brown fat, that's the future of trying to figure out yet another way to try and lose weight effectively and quickly."

The researchers speculate that brown fat is telling the brain many things, such as how much heat is being generated, how much and what types of free energy are being used or stored, how much fat we have and how much fat we've lost.

"As brown fat gets hotter and starts to generate heat, being active and doing good things for our body, it increases our metabolism and helps us burn white fat," Garretson said. "As it's getting hotter, Dr. (Vitaly) Ryu and other members of our lab found that it tells the brain it's getting hotter. We think this is some type of feedback, like a thermostat, and as it gets hotter, it probably controls how the brain is talking back to it."

It was already known the brain communicates with fat tissue by telling it to break down and either release or use free energy for our bodies to function. This study shows a feedback loop between brown fat tissue and the brain.

The research team has studied the communication from fat to the brain and the brain to fat for years, but they're one of only a few labs in the world to examine communication from fat to the brain through the nervous system, Garretson said.

###

The research team includes Ryu, Garretson, Dr. Yang Liu, Dr. Cheryl Vaughan and Dr. Timothy Bartness, director of the Center for Obesity Reversal at Georgia State. The study is funded by the National Institutes of Health.

Media Contact

LaTina Emerson
lemerson1@gsu.edu
404-413-1353

 @GSU_News

http://www.gsu.edu 

LaTina Emerson | EurekAlert!

Further reports about: Metabolism Neuroscience brown fat discover fat tissue healthy heat nerves nervous nervous system sensory nerves

More articles from Life Sciences:

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

nachricht The Nagoya Protocol Creates Disadvantages for Many Countries when Applied to Microorganisms
05.12.2016 | Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NASA's AIM observes early noctilucent ice clouds over Antarctica

05.12.2016 | Earth Sciences

Shape matters when light meets atom

05.12.2016 | Physics and Astronomy

Researchers uncover protein-based “cancer signature”

05.12.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>