Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers discover how body's good fat tissue communicates with brain

30.03.2015

Brown fat tissue, the body's "good fat," communicates with the brain through sensory nerves, possibly sharing information that is important for fighting human obesity, such as how much fat we have and how much fat we've lost, according to researchers at Georgia State University.

The findings, published in The Journal of Neuroscience, help to describe the conversation that takes place between the brain and brown fat tissue while brown fat is generating heat.


These are sensory and sympathetic nerves connected to brown fat through the nervous system. Sensory nerves (red/orange) send information from fat to the brain and sympathetic nerves (green/orange) send the signal for fat to be activated or break down.

Credit: Georgia State University

Brown fat is considered "good fat" or "healthy fat" because it burns calories to help generate heat for our bodies and expend energy, while white fat stores energy for later and can increase the risk for health issues, such as diabetes and heart disease. A person with a healthy metabolism has less white fat and an active supply of brown fat.

Studies show that brown fat plays a big role in someone having the capability to burn more energy, becoming a tool to stay trim and fight obesity. Pharmaceutical companies are trying to target brown fat and activate it more, said Johnny Garretson, study author and doctoral student in the Neuroscience Institute and Center for Obesity Reversal at Georgia State.

The study found that when brown fat tissue was activated with a drug that mimics the sympathetic nervous system messages that normally come from the brain, the fat talked back to the brain by activating sensory nerves. The sensory nerves from brown fat increased their activity in response to direct chemical activation and heat generation.

"This is the first time that the function of sensory nerves from brown fat has been examined," Garretson said. "Brown fat is an active organ that's relatively important for metabolism, and we found a new pathway of its communication.

"The study informs us more about the communication between fat and the brain, which is really beneficial for treating human obesity. There is evidence that people with more brown fat have a better metabolism, lower instances of type II diabetes and are trimmer. Knowing how to increase the amount of brown fat activity or increase the brown fat, that's the future of trying to figure out yet another way to try and lose weight effectively and quickly."

The researchers speculate that brown fat is telling the brain many things, such as how much heat is being generated, how much and what types of free energy are being used or stored, how much fat we have and how much fat we've lost.

"As brown fat gets hotter and starts to generate heat, being active and doing good things for our body, it increases our metabolism and helps us burn white fat," Garretson said. "As it's getting hotter, Dr. (Vitaly) Ryu and other members of our lab found that it tells the brain it's getting hotter. We think this is some type of feedback, like a thermostat, and as it gets hotter, it probably controls how the brain is talking back to it."

It was already known the brain communicates with fat tissue by telling it to break down and either release or use free energy for our bodies to function. This study shows a feedback loop between brown fat tissue and the brain.

The research team has studied the communication from fat to the brain and the brain to fat for years, but they're one of only a few labs in the world to examine communication from fat to the brain through the nervous system, Garretson said.

###

The research team includes Ryu, Garretson, Dr. Yang Liu, Dr. Cheryl Vaughan and Dr. Timothy Bartness, director of the Center for Obesity Reversal at Georgia State. The study is funded by the National Institutes of Health.

Media Contact

LaTina Emerson
lemerson1@gsu.edu
404-413-1353

 @GSU_News

http://www.gsu.edu 

LaTina Emerson | EurekAlert!

Further reports about: Metabolism Neuroscience brown fat discover fat tissue healthy heat nerves nervous nervous system sensory nerves

More articles from Life Sciences:

nachricht Fingerprint' technique spots frog populations at risk from pollution
27.03.2017 | Lancaster University

nachricht Parallel computation provides deeper insight into brain function
27.03.2017 | Okinawa Institute of Science and Technology (OIST) Graduate University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>