Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers discover a possible reason for drug resistance in breast tumors

20.07.2015

HER2 membrane proteins play a special role in certain types of breast cancer: amplified levels of HER2 drive unrestricted cell growth. HER2-tailored antibody-based therapeutics aim to prevent cancer cell growth. However, two-thirds of HER2 positive breast cancer patients develop resistance against HER2-targeting drugs. The reason for this is not yet understood. Researchers now found out, that HER2 dimers appeared to be absent from a small sub-population of resting SKBR3 breast cancer cells. This small subpopulation may have self-renewing properties that are resistant to HER2-antibody therapy and thus able to seed new tumor growth.

For their studies researchers from the INM – Leibniz-Institute for New Materials, Saarbrücken and from the German Cancer Research Center (DKFZ) in Heidelberg used a new electron microscopy method called Liquid STEM. It allows nanoscale studies of intact cells in their native liquid environment.

The scientists have studied the local variations of HER2 membrane protein and of its dimers. HER2 is a member of the human epidermal growth factor receptor (EGFR) family. These family members trigger cell growth signals, when two of the membrane proteins are bound into a protein complex (dimerization).

This happens usually after the binding of a small protein, the epidermal growth factor, which circulates in the blood stream and serves as communicator to transmit signals that regulate cell growth. HER2 is special in the sense that it does not need the growth factor protein in order to form dimers. It is thus capable of triggering cell growth without external regulation.

In certain types of breast cancer, amplified levels of HER2 and its dimerization are known to drive unrestricted cell growth. HER2-tailored antibody-based therapeutics entered clinical practice more than a decade ago. These drugs aim to prevent cell growth triggered by HER2 homo- and/or heterodimerization.

“We found out, that HER2 dimers appeared to be absent from a small sub-population of resting SKBR3 cells. Could such cells survive the therapy and then develop into a drug resistant cancer at a later stage? It thus seems to be of key significance to study this sub-population of cells with exceptional phenotype,” says Niels de Jonge, head of the Innovative Electron Microscopy group.

HER2 dimerization processes were thus far mostly studied on the basis of cell population averages, for example, with biochemical methods using pooled cell material, and information about the localization of HER2 dimerization was lacking. Therefore, the researchers around de Jonge pioneered the electron microscopy method Liquid STEM to imaging these receptors on cancer cells. The cells were examined on a microchip placed in the electron microscope, and remained intact and in liquid.

“Specimens cannot be studied in liquid with traditional electron microscopy”, explains Professor de Jonge. “Cells are typically studied in dry state via thin sectioning of solid dried plastic embedded or frozen material. The role of HER proteins is a "hot" topic in cancer research but despite large research efforts using a wide range of techniques over the past decades this important information was not unveiled before. Our novel findings were obtained as a direct consequence of the high spatial resolution of Liquid STEM combined with its capability to study many intact cells in liquid,” says de Jonge.

Original Publication:
“Local variations of HER2 dimerization in breast cancer cells discovered by correlative fluorescence and liquid electron microscopy” was published in the new online journal Science Advances Sci. Adv. 1, e1500165 (2015) by D. B. Peckys, U. Korf, N. de Jonge.

The research was conducted by Prof. Dr. Niels de Jonge, Dr. Diana B. Peckys of the INM – Leibniz-Institute for New Materials in Saarbrücken together with the group of Dr. Ulrike Korf, Division of Molecular Genome Analysis, German Cancer Research Center (DKFZ) in Heidelberg, Germany.

Your expert:
Prof. Niels de Jonge
INM – Leibniz Institute for New Materials
Head Innovative Electron Microscopy
Phone: +49681-9300-313
niels.dejonge(at)leibniz-inm.de

INM conducts research and development to create new materials – for today, tomorrow and beyond. Chemists, physicists, biologists, materials scientists and engineers team up to focus on these essential questions: Which material properties are new, how can they be investigated and how can they be tailored for industrial applications in the future? Four research thrusts determine the current developments at INM: New materials for energy application, new concepts for medical surfaces, new surface materials for tribological systems and nano safety and nano bio. Research at INM is performed in three fields: Nanocomposite Technology, Interface Materials, and Bio Interfaces.
INM – Leibniz Institute for New Materials, situated in Saarbrücken, is an internationally leading centre for materials research. It is an institute of the Leibniz Association and has about 210 employees.

Weitere Informationen:

http://www.leibniz-inm.de/en
http://www.leibniz-gemeinschaft.de

Dr. Carola Jung | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>