Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers discover a possible reason for drug resistance in breast tumors

20.07.2015

HER2 membrane proteins play a special role in certain types of breast cancer: amplified levels of HER2 drive unrestricted cell growth. HER2-tailored antibody-based therapeutics aim to prevent cancer cell growth. However, two-thirds of HER2 positive breast cancer patients develop resistance against HER2-targeting drugs. The reason for this is not yet understood. Researchers now found out, that HER2 dimers appeared to be absent from a small sub-population of resting SKBR3 breast cancer cells. This small subpopulation may have self-renewing properties that are resistant to HER2-antibody therapy and thus able to seed new tumor growth.

For their studies researchers from the INM – Leibniz-Institute for New Materials, Saarbrücken and from the German Cancer Research Center (DKFZ) in Heidelberg used a new electron microscopy method called Liquid STEM. It allows nanoscale studies of intact cells in their native liquid environment.

The scientists have studied the local variations of HER2 membrane protein and of its dimers. HER2 is a member of the human epidermal growth factor receptor (EGFR) family. These family members trigger cell growth signals, when two of the membrane proteins are bound into a protein complex (dimerization).

This happens usually after the binding of a small protein, the epidermal growth factor, which circulates in the blood stream and serves as communicator to transmit signals that regulate cell growth. HER2 is special in the sense that it does not need the growth factor protein in order to form dimers. It is thus capable of triggering cell growth without external regulation.

In certain types of breast cancer, amplified levels of HER2 and its dimerization are known to drive unrestricted cell growth. HER2-tailored antibody-based therapeutics entered clinical practice more than a decade ago. These drugs aim to prevent cell growth triggered by HER2 homo- and/or heterodimerization.

“We found out, that HER2 dimers appeared to be absent from a small sub-population of resting SKBR3 cells. Could such cells survive the therapy and then develop into a drug resistant cancer at a later stage? It thus seems to be of key significance to study this sub-population of cells with exceptional phenotype,” says Niels de Jonge, head of the Innovative Electron Microscopy group.

HER2 dimerization processes were thus far mostly studied on the basis of cell population averages, for example, with biochemical methods using pooled cell material, and information about the localization of HER2 dimerization was lacking. Therefore, the researchers around de Jonge pioneered the electron microscopy method Liquid STEM to imaging these receptors on cancer cells. The cells were examined on a microchip placed in the electron microscope, and remained intact and in liquid.

“Specimens cannot be studied in liquid with traditional electron microscopy”, explains Professor de Jonge. “Cells are typically studied in dry state via thin sectioning of solid dried plastic embedded or frozen material. The role of HER proteins is a "hot" topic in cancer research but despite large research efforts using a wide range of techniques over the past decades this important information was not unveiled before. Our novel findings were obtained as a direct consequence of the high spatial resolution of Liquid STEM combined with its capability to study many intact cells in liquid,” says de Jonge.

Original Publication:
“Local variations of HER2 dimerization in breast cancer cells discovered by correlative fluorescence and liquid electron microscopy” was published in the new online journal Science Advances Sci. Adv. 1, e1500165 (2015) by D. B. Peckys, U. Korf, N. de Jonge.

The research was conducted by Prof. Dr. Niels de Jonge, Dr. Diana B. Peckys of the INM – Leibniz-Institute for New Materials in Saarbrücken together with the group of Dr. Ulrike Korf, Division of Molecular Genome Analysis, German Cancer Research Center (DKFZ) in Heidelberg, Germany.

Your expert:
Prof. Niels de Jonge
INM – Leibniz Institute for New Materials
Head Innovative Electron Microscopy
Phone: +49681-9300-313
niels.dejonge(at)leibniz-inm.de

INM conducts research and development to create new materials – for today, tomorrow and beyond. Chemists, physicists, biologists, materials scientists and engineers team up to focus on these essential questions: Which material properties are new, how can they be investigated and how can they be tailored for industrial applications in the future? Four research thrusts determine the current developments at INM: New materials for energy application, new concepts for medical surfaces, new surface materials for tribological systems and nano safety and nano bio. Research at INM is performed in three fields: Nanocomposite Technology, Interface Materials, and Bio Interfaces.
INM – Leibniz Institute for New Materials, situated in Saarbrücken, is an internationally leading centre for materials research. It is an institute of the Leibniz Association and has about 210 employees.

Weitere Informationen:

http://www.leibniz-inm.de/en
http://www.leibniz-gemeinschaft.de

Dr. Carola Jung | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>