Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Researchers Develop Method for Mapping Neuron Clusters


A team of scientists has developed a method for identifying clusters of neurons that work in concert to guide the behavior. Their findings, which appear in the journal Neuron, address a long-standing mystery about the organization of the prefrontal cortex (PFC)—one of the most recently evolved parts of the primate brain that underlies complex cognitive functions.

“We have established a method to find functional groupings of neurons based on co-fluctuation of their responses,” says Roozbeh Kiani, an assistant professor in NYU’s Center for Neural Science and one of the study’s authors. “In doing so, we show that PFC neurons are organized into spatially contiguous maps, much like their counterparts in sensory cortices. The widely accepted notion that orderly spatial maps are restricted to sensory cortices, therefore, needs revision.”

“Our methodology is closely related to the techniques that led to the discovery of functional networks in brain imaging studies,” adds William Newsome, a professor of neurobiology at Stanford University and a Howard Hughes Medical Institute Investigator. “There is, however, a crucial difference. We extend the methodology to cellular scale and demonstrate that it can be used for identifying networks at a neuronal level. By suggesting a potential neural substrate for functional networks in macro-scale brain imaging we bridge a critical gap in our knowledge.”

The research focused on the “parcellation” of PFC neurons: how these cells are grouped together to perform specific functions. The scientists showed that the discovered subnetworks in the prefrontal cortex are linked to the decision-making behavior but seem to have distinct roles: one subnetwork better represents upcoming choices and another one seems to keep track of past choices.

Previous studies that explored spatial organization of neurons in the prefrontal cortex predominantly focused on the average responses of neurons by examining them one at a time. They missed the organization of the network “forest” for the neuron “trees”. In the Neuron paper, the researchers outlined a vastly different method. In it, they focused on the correlated activity of large numbers of simultaneously recorded neurons to spot the larger “topography” of the network—and how their groupings may be linked to the behavior. Specifically, they applied clustering algorithms that discover natural divisions in the matrix of response correlations to divide the recorded neural population.

“This technique provides an innovative, but straightforward, way to delineate cortical networks,” observers Kiani. “The subnetworks in the PFC are stable across behavioral tasks and are apparent even in the spontaneous fluctuations of neural responses. They seem to be largely defined by the intrinsic connectivity of neurons in the local network. Therefore, they provide an objective basis for dividing the cortex into constituent subnetworks, offering a common standard across experiments.”

The study’s other authors include Diogo Peixoto and Christopher Cueva from Stanford University’s Department of Neurobiology and Stephen Ryu, M.D., from the Palo Alto Medical Foundation’s Department of Neurosurgery.

The research was funded, in part, by Howard Hughes Medical Institute, Simons Collaboration on the Global Brain, and the Air Force Research Laboratory (FA9550-07-1-0537).

Contact Information
James Devitt
Deputy Director for Media Relations
Phone: 212-998-6808

James Devitt | newswise
Further information:

Further reports about: Mapping Medical Neuron functional networks networks neural prefrontal cortex responses sensory

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>