Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research team from Münster develops innovative catalytic chemistry process

03.09.2015

Inspired by the chemistry of the eye: Münster University chemists have succeeded in turning to their advantage a chemical reaction which takes place in the eye and enables us to see light and dark. It can be used to create important carbon compounds which need a lot of energy to be produced by other means.

Nature can do it, and chemists in the lab often dream of doing it: producing substances simply and ecologically – as far as possible without any undesirable side-products.


Inspiration to the chemists: the eye

Photo: Colourbox.de/A. Tiplyashin (Permission for photo use only in connection with this press release and with indication of photo credit)

A team of researchers from Münster University has now succeeded in turning to its advantage a chemical reaction which takes place in the eye and enables us to see light and dark.

This process, say the researchers, is of great interest for the chemical industry because it could be used to create special variants (isomers) of important carbon compounds which need a lot of energy to be produced by other means.

In the eye, the light-absorbing pigment rhodopsin plays an elementary role as a light sensor. When light enters the eye, rhodopsin triggers a chemical signal chain, thereby activating the photoreceptor cells. “We were inspired by this process,” says Jan Metternich, a doctoral student of chemistry who carried out the study together with Dr. Ryan Gilmour, Professor of Chemical Biology in the “Cells in Motion” Cluster of Excellence at Münster University.

One of the central components of the light-absorbing pigment rhodopsin is retinal (“Vitamin A”). To activate the photoreceptor cells, however, a very special variant of the retinal molecule is needed. As a result of light entering the eye, it is converted into a second, very similar form, thereby starting off the chemical signal chain. “Isomers” are what chemists call the different forms of a molecule.

“The selective formation of isomers is important not only for our ability to see, but also, for example, for the production of medicines, and agrochemicals,” says Ryan Gilmour. “Our innovative method has provided us with a simple way of selectively producing these valuable isomers that are needed for both academic and industrial chemistry.”

The reaction is triggered by light – just as in the eye. The so-called catalyst which the reactions require – which increases the speed of the reaction – is a cheap and ecological molecule: riboflavin, a B vitamin which is also used, for example, as a food colour additive.

Original literature:

Jan B. Metternich and Ryan Gilmour (2015): A Bio-Inspired, Catalytic E → Z Isomerization of Activated Olefin. J. Am. Chem. Soc.; DOI: 10.1021/jacs.5b07136

Weitere Informationen:

http://pubs.acs.org/doi/full/10.1021/jacs.5b07136 Original publication
http://www.uni-muenster.de/Cells-in-Motion/de/people/all/gilmour-r.php CiM Professor Ryan Gilmour

Dr. Christina Heimken | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht The irresistible fragrance of dying vinegar flies
16.08.2017 | Max-Planck-Institut für chemische Ökologie

nachricht How protein islands form
15.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

Im Focus: Scientists improve forecast of increasing hazard on Ecuadorian volcano

Researchers from the University of Miami (UM) Rosenstiel School of Marine and Atmospheric Science, the Italian Space Agency (ASI), and the Instituto Geofisico--Escuela Politecnica Nacional (IGEPN) of Ecuador, showed an increasing volcanic danger on Cotopaxi in Ecuador using a powerful technique known as Interferometric Synthetic Aperture Radar (InSAR).

The Andes region in which Cotopaxi volcano is located is known to contain some of the world's most serious volcanic hazard. A mid- to large-size eruption has...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

New thruster design increases efficiency for future spaceflight

16.08.2017 | Physics and Astronomy

Transporting spin: A graphene and boron nitride heterostructure creates large spin signals

16.08.2017 | Materials Sciences

A new method for the 3-D printing of living tissues

16.08.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>