Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research team from Münster develops innovative catalytic chemistry process

03.09.2015

Inspired by the chemistry of the eye: Münster University chemists have succeeded in turning to their advantage a chemical reaction which takes place in the eye and enables us to see light and dark. It can be used to create important carbon compounds which need a lot of energy to be produced by other means.

Nature can do it, and chemists in the lab often dream of doing it: producing substances simply and ecologically – as far as possible without any undesirable side-products.


Inspiration to the chemists: the eye

Photo: Colourbox.de/A. Tiplyashin (Permission for photo use only in connection with this press release and with indication of photo credit)

A team of researchers from Münster University has now succeeded in turning to its advantage a chemical reaction which takes place in the eye and enables us to see light and dark.

This process, say the researchers, is of great interest for the chemical industry because it could be used to create special variants (isomers) of important carbon compounds which need a lot of energy to be produced by other means.

In the eye, the light-absorbing pigment rhodopsin plays an elementary role as a light sensor. When light enters the eye, rhodopsin triggers a chemical signal chain, thereby activating the photoreceptor cells. “We were inspired by this process,” says Jan Metternich, a doctoral student of chemistry who carried out the study together with Dr. Ryan Gilmour, Professor of Chemical Biology in the “Cells in Motion” Cluster of Excellence at Münster University.

One of the central components of the light-absorbing pigment rhodopsin is retinal (“Vitamin A”). To activate the photoreceptor cells, however, a very special variant of the retinal molecule is needed. As a result of light entering the eye, it is converted into a second, very similar form, thereby starting off the chemical signal chain. “Isomers” are what chemists call the different forms of a molecule.

“The selective formation of isomers is important not only for our ability to see, but also, for example, for the production of medicines, and agrochemicals,” says Ryan Gilmour. “Our innovative method has provided us with a simple way of selectively producing these valuable isomers that are needed for both academic and industrial chemistry.”

The reaction is triggered by light – just as in the eye. The so-called catalyst which the reactions require – which increases the speed of the reaction – is a cheap and ecological molecule: riboflavin, a B vitamin which is also used, for example, as a food colour additive.

Original literature:

Jan B. Metternich and Ryan Gilmour (2015): A Bio-Inspired, Catalytic E → Z Isomerization of Activated Olefin. J. Am. Chem. Soc.; DOI: 10.1021/jacs.5b07136

Weitere Informationen:

http://pubs.acs.org/doi/full/10.1021/jacs.5b07136 Original publication
http://www.uni-muenster.de/Cells-in-Motion/de/people/all/gilmour-r.php CiM Professor Ryan Gilmour

Dr. Christina Heimken | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>