Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New Research Shows Versatility of Amniotic Fluid Stem Cells

For the first time, scientists have demonstrated that stem cells found in amniotic fluid meet an important test of potential to become specialized cell types, which suggests they may be useful for treating a wider array of diseases and conditions than scientists originally thought.

Reporting in Oncogene, a publication of Nature Publishing Group, the research teams of Anthony Atala, M.D., director of the Wake Forest Institute for Regenerative Medicine, and Markus Hengstschläger, Ph.D., from the Medical University of Vienna, have shown that these amnion stem cells can form three-dimensional aggregates of cells known as embryoid bodies (EBs). It is believed that cells at this stage of development can be directed to become virtually any cell in the human body.

“This finding suggests that the amnion cells have greater potential than we originally thought and may be able to form many cell types,” said Atala. “This could expand the number for diseases and conditions that they may be helpful for.”

Atala’s team is currently evaluating the cells for their potential to treat diabetes and kidney disease. They were the first to report success (Nature Biotechnology, Jan. 2007) in isolating stem cells from placenta and amniotic fluid, which surrounds the developing fetus. The current research is one of several projects designed to determine the potential of this new type of stem cell.

For the study, scientists generated two additional lines of stem cells from amniotic fluid using the same protocol developed by Atala’s lab. They then investigated the incidence of EB formation in all three lines.

“Performing many independent experiments using different approaches, we demonstrate in the report that human amnion stem cells … can indeed form embryoid bodies,” write the researchers in Oncogene. “Amnion cells are on the way to become an important source for both basic science and regenerative medicine.”

In addition to the finding about EBs, the scientists identified a protein found inside cells (mTOR) as the regulator of EB formation. Hengstschläger, whose team was the first to provide evidence for the existence of stem cells in amniotic fluid, said that this finding may allow for new insights into the molecular mechanism of EB formation.

He said the cells may be a useful source for generating disease-specific stem cell lines for studying the differentiation process to determine what goes wrong in genetic diseases.

"These stem cells allow for studying the effects of mutations causing human genetic diseases on specific cell differentiation processes," he said.

Other potential advantages of the cells are that they can be grown in large quantities and are readily available during gestation and at the time of birth.

“Whether these cells are as versatile as embryonic stem cells remains to be determined,” said Atala, “but the current finding is certainly encouraging.”

Atala stopped short of calling the cells pluripotent, which means the ability to form many cell types. He said while the cells meet some of the characteristics of pluripotency, such as versatility, they do not form tumors when implanted in animals, which is also considered a characteristic. The fact that the amnion cells are less likely to form tumors may be one advantage that they have over embryonic stem cells in their potential for clinical use.

Co-researchers were Alessandro Valli, Ph.D., Margit Rosner, student, Christiane Fuchs, MSc., Nicol Siegel, MSc., and Helmut Dolznig, Ph.D., from the Medical University of Vienna, Colin E. Bishop, Ph.D., from Wake Forest, and Ulrike Mädel, student, and Wilfried Feichtinger, M.D., from Wunschbaby Zentrum, in Vienna, Austria.

About the Wake Forest Institute for Regenerative Medicine
The Wake Forest Institute for Regenerative Medicine ( is an established center dedicated to the discovery, development and clinical translation of regenerative medicine technologies by leading faculty. The institute has used biomaterials alone, cell therapies, and engineered tissues and organs for the treatment of patients with injury or disease. The Institute is based at Wake Forest University Baptist Medical Center (, an academic health system comprised of North Carolina Baptist Hospital, Wake Forest University Health Sciences, which operates the university’s School of Medicine, and Wake Forest University Physicians. The system is consistently ranked as one of “America’s Best Hospitals” by U.S. News & World Report.

Karen Richardson | Newswise Science News
Further information:

More articles from Life Sciences:

nachricht When fat cells change their colour
28.10.2016 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Aquaculture: Clear Water Thanks to Cork
28.10.2016 | Technologie Lizenz-Büro (TLB) der Baden-Württembergischen Hochschulen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>