Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New Research Shows Versatility of Amniotic Fluid Stem Cells

For the first time, scientists have demonstrated that stem cells found in amniotic fluid meet an important test of potential to become specialized cell types, which suggests they may be useful for treating a wider array of diseases and conditions than scientists originally thought.

Reporting in Oncogene, a publication of Nature Publishing Group, the research teams of Anthony Atala, M.D., director of the Wake Forest Institute for Regenerative Medicine, and Markus Hengstschläger, Ph.D., from the Medical University of Vienna, have shown that these amnion stem cells can form three-dimensional aggregates of cells known as embryoid bodies (EBs). It is believed that cells at this stage of development can be directed to become virtually any cell in the human body.

“This finding suggests that the amnion cells have greater potential than we originally thought and may be able to form many cell types,” said Atala. “This could expand the number for diseases and conditions that they may be helpful for.”

Atala’s team is currently evaluating the cells for their potential to treat diabetes and kidney disease. They were the first to report success (Nature Biotechnology, Jan. 2007) in isolating stem cells from placenta and amniotic fluid, which surrounds the developing fetus. The current research is one of several projects designed to determine the potential of this new type of stem cell.

For the study, scientists generated two additional lines of stem cells from amniotic fluid using the same protocol developed by Atala’s lab. They then investigated the incidence of EB formation in all three lines.

“Performing many independent experiments using different approaches, we demonstrate in the report that human amnion stem cells … can indeed form embryoid bodies,” write the researchers in Oncogene. “Amnion cells are on the way to become an important source for both basic science and regenerative medicine.”

In addition to the finding about EBs, the scientists identified a protein found inside cells (mTOR) as the regulator of EB formation. Hengstschläger, whose team was the first to provide evidence for the existence of stem cells in amniotic fluid, said that this finding may allow for new insights into the molecular mechanism of EB formation.

He said the cells may be a useful source for generating disease-specific stem cell lines for studying the differentiation process to determine what goes wrong in genetic diseases.

"These stem cells allow for studying the effects of mutations causing human genetic diseases on specific cell differentiation processes," he said.

Other potential advantages of the cells are that they can be grown in large quantities and are readily available during gestation and at the time of birth.

“Whether these cells are as versatile as embryonic stem cells remains to be determined,” said Atala, “but the current finding is certainly encouraging.”

Atala stopped short of calling the cells pluripotent, which means the ability to form many cell types. He said while the cells meet some of the characteristics of pluripotency, such as versatility, they do not form tumors when implanted in animals, which is also considered a characteristic. The fact that the amnion cells are less likely to form tumors may be one advantage that they have over embryonic stem cells in their potential for clinical use.

Co-researchers were Alessandro Valli, Ph.D., Margit Rosner, student, Christiane Fuchs, MSc., Nicol Siegel, MSc., and Helmut Dolznig, Ph.D., from the Medical University of Vienna, Colin E. Bishop, Ph.D., from Wake Forest, and Ulrike Mädel, student, and Wilfried Feichtinger, M.D., from Wunschbaby Zentrum, in Vienna, Austria.

About the Wake Forest Institute for Regenerative Medicine
The Wake Forest Institute for Regenerative Medicine ( is an established center dedicated to the discovery, development and clinical translation of regenerative medicine technologies by leading faculty. The institute has used biomaterials alone, cell therapies, and engineered tissues and organs for the treatment of patients with injury or disease. The Institute is based at Wake Forest University Baptist Medical Center (, an academic health system comprised of North Carolina Baptist Hospital, Wake Forest University Health Sciences, which operates the university’s School of Medicine, and Wake Forest University Physicians. The system is consistently ranked as one of “America’s Best Hospitals” by U.S. News & World Report.

Karen Richardson | Newswise Science News
Further information:

More articles from Life Sciences:

nachricht Don't Give the Slightest Chance to Toxic Elements in Medicinal Products
23.03.2018 | Physikalisch-Technische Bundesanstalt (PTB)

nachricht North and South Cooperation to Combat Tuberculosis
22.03.2018 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>