Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Reptile vocalization is surprisingly flexible


It has now been shown for the first time that non-avian reptiles are able to adjust their calls in relation to environmental noise as is known for the complex vocal communication systems of birds and mammals. In Tokays, night active geckos, researchers of the Max Planck Institute for Ornithology in Seewiesen found an increase in the duration of brief call notes in the presence of broadcast noise compared to quiet conditions. The geckos did not adjust the amplitude of their calls, however, under noisy conditions the animals produced more of the louder syllables. This discovery shows that the communication systems of non-avian reptiles are much more complex than previously thought.

The sophisticated vocal communication systems of birds and mammals are characterized by a high degree of plasticity in which signals are individually adjusted in response to changes in the environment. One mechanism of such vocal plasticity is the Lombard effect, in which the call amplitude increases depending on the level of ambient noise. This Lombard effect is often accompanied by an increase in the duration of the call, which further helps to detect the signals in noise.

Phenotypic plasticity of Tokay calls reveals the complex communication of lizards

Frank Lehmann / Max Planck Institute for Ornithology

In non-avian reptiles some species do have vocal communication, like for example the Tokay, a night active gecko from South East Asia. Within his repertoire, especially the loud GECK-O call stands out and led to his scientific name Gekko gecko. The GECK-O call has important functions for the communication of Tokay males to attract females and to repel rival males.

This call is often preceded by low-amplitude cackles. For their study, Henrik Brumm and Sue Anne Zollinger of the Max Planck Institute for Ornithology exposed Tokays to noise of about 65 dB(A) which corresponds to the traffic noise of a busy street.

They wanted to find out if the Lombard effect could also be found in a reptile. And in fact, the Tokays increased the duration of the GECK-calls by 7 percent and the O-calls by 37 percent compared to the control group in quiet conditions. Therefore, the Tokays, and probably also other vocally-communicating reptiles, are able to adjust their calls depending on the ambient conditions.

However, the researchers could not find a Lombard effect in the calls, as the Tokays did not increase the amplitude of their call syllables in relation to the background noise level. „The study suggests that the Lombard effect evolved independently in birds and mammals“, says Henrik Brumm, first author of the study and research group leader in Seewiesen.

However, the Tokays employed another strategy to increase the overall signal-to-noise ratio of their calls: Instead of increasing the amplitude of each call component, they produced more of the loud GECK-O syllables and fewer of the softer cackle calls in noise. „We think that the fact that signals will reach the intended recipient is a driving force for the evolution of a communication system, independently of the animal group“, says Sue Anne Zollinger, co-author of the study.

Dr. Henrik Brumm
Max Planck Institute for Ornithology, Seewiesen
Research Group Leader „Communication and Social Behaviour”
Phone.: +49 8157 932 355

Dr. Sabine Spehn | Max-Planck-Institut für Ornithologie

More articles from Life Sciences:

nachricht Don't Give the Slightest Chance to Toxic Elements in Medicinal Products
23.03.2018 | Physikalisch-Technische Bundesanstalt (PTB)

nachricht North and South Cooperation to Combat Tuberculosis
22.03.2018 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>