Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Silence please

08.04.2002


Researchers at Cambridge University have been studying the process of gene silencing in transgenic plants, and have cloned a genetic modifier that could reduce transgene instability. Dr Ian Furner will be presenting the results of the study at the Society for Experimental Biology conference on Monday 8 April.



Gene silencing is a naturally occurring process by which genes can become shut off within a plant. When transgenes are introduced into plants they can also show gene silencing. Genes which share sequence similarity are said to be homologous. When transgenes showing homology to normal cellular genes are introduced they can show a special form of silencing called homology-dependent gene silencing and this typically results in the silencing of one or both genes.

Dr Furner’s group studied the homology-dependent silencing process in the Arabidopsis plant. By introducing extra copies of the chalcone synthase gene (CHS) into the plant, they silenced the endogenous gene. Arabidopsis plants grown in bright white light are purple due to the accumulation of the purple pigment anthocyanin. Plants grown at low light levels and plants showing CHS silencing grown at high light levels are green with little anthocyanin.


The group mapped the transgene insert and showed that it resulted in silencing of the normal copy of CHS at the TT4 locus. They also observed an increase in DNA methylation at TT4 after the transgene had been crossed away. Genetic mutations which reduce DNA methylation relieve the CHS silencing and revert the plants to the purple phenotype. Detailed characterisation of one of these mutations and the corresponding gene will be presented.

Dr Furner’s findings could be useful for the improvement of genetic modification. “Gene silencing could potentially be used to silence undesirable traits and modifiers of gene silencing offer some potential to reduce transgene instability”, he said.

Jenny Gimpel | alphagalileo

More articles from Life Sciences:

nachricht Zap! Graphene is bad news for bacteria
23.05.2017 | Rice University

nachricht Discovery of an alga's 'dictionary of genes' could lead to advances in biofuels, medicine
23.05.2017 | University of California - Los Angeles

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Scientists propose synestia, a new type of planetary object

23.05.2017 | Physics and Astronomy

Zap! Graphene is bad news for bacteria

23.05.2017 | Life Sciences

Medical gamma-ray camera is now palm-sized

23.05.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>