Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Green technology to boost production of malaria ‘wonder drug’

12.02.2007
New technologies that make the large-scale extraction of a natural antimalarial ‘wonder drug’ both cheaper and greener are to be developed and trialled in a new European effort.

Since it was first extracted from the herb Sweet Wormwood (Artemisia annua) by Chinese scientists in the 1980s, artemisinin has proven to be a potent anti-malarial treatment.

Most patients treated with Artemisinin-based Combination Treatments (ACTs) show clinical improvement within 24 hours.

However, large-scale production of artemisinin drugs, which are used as part of a combination therapy to avoid development of resistance by malaria parasites, has so far relied on extraction technology based on the petroleum derived hexane - a toxic and potentially explosive substance.

... more about:
»Artemisia »Artemisinin »Malaria »annua »hexane »solvent

In a search for a better extraction system, a team of chemical engineers from the University of Bath (UK) and a specialist UK business, FSC Development Services Ltd, were commissioned (in 2005) by the non-profit Medicines for Malaria Venture (MMV) and the Dutch Government to evaluate a range of new technologies that could replace hexane extraction, and make large-scale production both cheaper and more environmentally friendly.

In research published in the Journal of Natural Products, Dr Alexei Lapkin from the University’s Department of Chemical Engineering highlights three extraction processes that can compete with hexane extraction economically, as well as being better for the environment.

Now, using a £500,000 grant from the Dutch Government through MMV, some of these technologies will be demonstrated and tested over the next 12 months by a consortium of European companies and universities.

“Increased production of Artemisia annua is now happening in many countries around the world, but if we are to reduce the costs of the final drugs we need to increase yield through higher yielding varieties and introduce new, more efficient, safer and more environmentally friendly extraction systems,” said Dr Lapkin.

“The intention for this project is to build a small-scale demonstrator unit in Bath and prove its viability by extracting artemisinin from Artemisia annua plants grown in different countries and regions.

“The project will also explore purification methods of raw extracts to obtain material of good enough quality for pharmaceutical companies to buy for further processing into drug treatments.

“Our focus is on driving down the cost of extraction to help make this ‘wonder drug’ more readily available to the people who need it.”

Artemisinin is extracted from the Artemisia annua plant using a solvent which helps separate the different parts of the plant. The raw artemisinin is then purified to produce the final drug.

The most common solvent used in the current extraction process is hexane, an alkane hydrocarbon produced from crude oil that is both toxic and explosive, making it damaging to the environment and expensive to handle safely.

The research team examined alternative extraction technologies using either supercritical carbon dioxide (scCO2), hydrofluorocarbon HFC-134a, ionic liquids (ILs) or ethanol as alternative solvents. In this initial study they used data provided by technology developers in the UK, and compared it with the known data for hexane extraction.

They found that the technologies using scCO2, HFC and ILs, all of which are non-flammable solvents, gave faster extraction times and a more complete extraction of the useful substances in the leaf.

These solvents are also considerably safer, with no risk of explosions, and were much greener, having a lower environmental impact in use, and offering the potential for biodegradability after use.

Ionic liquid and HFC-134a technologies in particular showed considerable promise, and the analysis suggests that they could compete with hexane extraction in terms of cost-effectiveness.

Over the next nine months, a demonstrator unit using HFC-134a will be built at the University of Bath in collaboration with Ineos Fluor (UK). Bioniqs Ltd, a spin-off company from University of York (UK), will continue their work on ionic liquids extraction, and University of Bremen (Germany) will be testing extraction with another widely used solvent, ethanol.

The whole project is being co-ordinated by FSC Development Services Ltd, which is based in Gloucestershire (UK).

“MMV is pleased to support this project even though it is not our traditional line of work, as the focus is purely on technology rather than developing new drugs or treatments,” said Dr Ian Bathurst, Director of Drug Discovery & Technology at MMV.

“Developing technology that makes the extraction process as efficient and cost-effective as possible makes the mass production of artemisinin economically, environmentally and socially viable. This will have a significant impact on the new ACTs we are developing.”

Malcom Cutler, head of FSC Development Services Ltd., said: “This project is not about profit for companies; tackling malaria is not a business, but a challenge we must do everything we can to overcome.”

As the plasmodium parasite which causes malaria is able to mutate and develop resistance to the drugs used against it, it is important to have a variety of treatments available and to continue developing new medicines.

Andrew McLaughlin | alfa
Further information:
http://www.bath.ac.uk/news/2007/2/12/artemisia.html

Further reports about: Artemisia Artemisinin Malaria annua hexane solvent

More articles from Life Sciences:

nachricht One step closer to reality
20.04.2018 | Max-Planck-Institut für Entwicklungsbiologie

nachricht The dark side of cichlid fish: from cannibal to caregiver
20.04.2018 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>