Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Green technology to boost production of malaria ‘wonder drug’

12.02.2007
New technologies that make the large-scale extraction of a natural antimalarial ‘wonder drug’ both cheaper and greener are to be developed and trialled in a new European effort.

Since it was first extracted from the herb Sweet Wormwood (Artemisia annua) by Chinese scientists in the 1980s, artemisinin has proven to be a potent anti-malarial treatment.

Most patients treated with Artemisinin-based Combination Treatments (ACTs) show clinical improvement within 24 hours.

However, large-scale production of artemisinin drugs, which are used as part of a combination therapy to avoid development of resistance by malaria parasites, has so far relied on extraction technology based on the petroleum derived hexane - a toxic and potentially explosive substance.

... more about:
»Artemisia »Artemisinin »Malaria »annua »hexane »solvent

In a search for a better extraction system, a team of chemical engineers from the University of Bath (UK) and a specialist UK business, FSC Development Services Ltd, were commissioned (in 2005) by the non-profit Medicines for Malaria Venture (MMV) and the Dutch Government to evaluate a range of new technologies that could replace hexane extraction, and make large-scale production both cheaper and more environmentally friendly.

In research published in the Journal of Natural Products, Dr Alexei Lapkin from the University’s Department of Chemical Engineering highlights three extraction processes that can compete with hexane extraction economically, as well as being better for the environment.

Now, using a £500,000 grant from the Dutch Government through MMV, some of these technologies will be demonstrated and tested over the next 12 months by a consortium of European companies and universities.

“Increased production of Artemisia annua is now happening in many countries around the world, but if we are to reduce the costs of the final drugs we need to increase yield through higher yielding varieties and introduce new, more efficient, safer and more environmentally friendly extraction systems,” said Dr Lapkin.

“The intention for this project is to build a small-scale demonstrator unit in Bath and prove its viability by extracting artemisinin from Artemisia annua plants grown in different countries and regions.

“The project will also explore purification methods of raw extracts to obtain material of good enough quality for pharmaceutical companies to buy for further processing into drug treatments.

“Our focus is on driving down the cost of extraction to help make this ‘wonder drug’ more readily available to the people who need it.”

Artemisinin is extracted from the Artemisia annua plant using a solvent which helps separate the different parts of the plant. The raw artemisinin is then purified to produce the final drug.

The most common solvent used in the current extraction process is hexane, an alkane hydrocarbon produced from crude oil that is both toxic and explosive, making it damaging to the environment and expensive to handle safely.

The research team examined alternative extraction technologies using either supercritical carbon dioxide (scCO2), hydrofluorocarbon HFC-134a, ionic liquids (ILs) or ethanol as alternative solvents. In this initial study they used data provided by technology developers in the UK, and compared it with the known data for hexane extraction.

They found that the technologies using scCO2, HFC and ILs, all of which are non-flammable solvents, gave faster extraction times and a more complete extraction of the useful substances in the leaf.

These solvents are also considerably safer, with no risk of explosions, and were much greener, having a lower environmental impact in use, and offering the potential for biodegradability after use.

Ionic liquid and HFC-134a technologies in particular showed considerable promise, and the analysis suggests that they could compete with hexane extraction in terms of cost-effectiveness.

Over the next nine months, a demonstrator unit using HFC-134a will be built at the University of Bath in collaboration with Ineos Fluor (UK). Bioniqs Ltd, a spin-off company from University of York (UK), will continue their work on ionic liquids extraction, and University of Bremen (Germany) will be testing extraction with another widely used solvent, ethanol.

The whole project is being co-ordinated by FSC Development Services Ltd, which is based in Gloucestershire (UK).

“MMV is pleased to support this project even though it is not our traditional line of work, as the focus is purely on technology rather than developing new drugs or treatments,” said Dr Ian Bathurst, Director of Drug Discovery & Technology at MMV.

“Developing technology that makes the extraction process as efficient and cost-effective as possible makes the mass production of artemisinin economically, environmentally and socially viable. This will have a significant impact on the new ACTs we are developing.”

Malcom Cutler, head of FSC Development Services Ltd., said: “This project is not about profit for companies; tackling malaria is not a business, but a challenge we must do everything we can to overcome.”

As the plasmodium parasite which causes malaria is able to mutate and develop resistance to the drugs used against it, it is important to have a variety of treatments available and to continue developing new medicines.

Andrew McLaughlin | alfa
Further information:
http://www.bath.ac.uk/news/2007/2/12/artemisia.html

Further reports about: Artemisia Artemisinin Malaria annua hexane solvent

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>