Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Drug that interrupts a key stage of cell division shows promise in patients with advanced solid tumours

09.11.2006
One of the first studies to investigate the effects of a new anti-cancer drug in patients with advanced or metastatic solid tumours has shown that it is capable of halting progression of the disease, and the study has provided the first proof of the drug’s mechanism of action.

The drug works by blocking aurora proteins, which play a key role in cell division and are implicated in the onset and progression of cancer. It was discovered and characterised by scientists at Nerviano Medical Sciences in Italy.

Dr Maja de Jonge, a medical oncologist at the Erasmus University Medical Centre, Rotterdam, The Netherlands, told the EORTC-NCI-AACR [1] Symposium on Molecular Targets and Cancer Therapeutics in Prague today (Wednesday 8 November): “So far we have tested the drug in 36 patients in a phase I clinical trial. All the patients had advanced solid cancers that were progressing at the time they entered the trial. However, in seven of these patients the disease stabilised and has remained stable in four of the patients for seven months or more. Without the drug we would have expected to see their disease continue to progress.”

Aurora proteins belong to a family of enzymes that regulate the different steps in mitosis when the cell nucleus divides into two identical cells. The enzymes help the dividing cell to share its genetic material between the daughter cells, and they are essential for cell proliferation. Aurora proteins are over-expressed in cancer and this causes unequal distribution of the genetic material, creating abnormal cells – the hallmark of cancer. However, it is only recently that scientists have started to investigate the proteins as targets for anti-cancer therapies, and this is one of the first studies to investigate an aurora kinase inhibitor in patients.

... more about:
»Cancer »Jonge »Solid »mg/m2 »tumours

Dr de Jonge and her colleagues tested an aurora kinase inhibitor PHA-739358. Her patients had a range of solid tumours: colorectal (9), pancreatic (3), sarcoma (5), ovarian (2), kidney (2), prostate (2), cancer of the bile ducts (2), oesophageal (3) and eight others.

They tested seven different dose levels of the drug (measured in milligrams per squared metre of body surface area (mg/m2)). Two patients could not tolerate well a dose of 400 mg/m2, and 330 mg/m2 appeared to be the recommended dose. The drug was infused into the patients’ veins over a six-hour period on days 1, 8 and 15 every four weeks.

Dr de Jonge said: “So far adverse effects have been relatively minor, consisting of a transient hypertensive episode in one patient, nausea, loss of appetite, diarrhoea, a temporary shortness of white blood cells (neutropenia), which was serious enough at 400 mg/m2 in one patient for the drug to be omitted on day eight and in another patient on day 15.

“Once the dose levels reached 190 mg/m2, tests on skin biopsies showed that the drug was inhibiting the aurora B protein – in other words it was beginning to do what we expected it to.

“The aurora B protein is responsible for phosphorylating histone H3 – a protein involved in the structure of chromatin (the strands of DNA that make up chromosomes) in cells. Inhibition of aurora B results in the inhibition of phosphorylation of histone H3, thereby blocking that step in cell division. This study shows, for the first time, that the aurora kinase inhibitor PHA-739358 inhibits phosphorylation of histone H3 in the skin of patients, and therewith provides a proof for its (or one of its) mechanisms of action.”

The researchers are continuing to recruit patients in order to define the safety of the drug and the recommended dose for subsequent studies. However, they believe the results so far are promising.

“The clinical trial has proved the concept that inhibition of the aurora protein disrupts an important stage of cell division, once the dose levels reaches 190m/m2,” said Dr de Jonge. “Patients are able to tolerate the drug and dosing schedule, and it is exciting that, at this early stage in the drug’s development, there is evidence of its ability to stabilise advanced disease.”

[1]EORTC [European Organisation for Research and Treatment of Cancer, NCI [National Cancer Institute], AACR [American Association for Cancer Research].

Emma Mason | alfa
Further information:
http://www.eortc.org

Further reports about: Cancer Jonge Solid mg/m2 tumours

More articles from Life Sciences:

nachricht Scientists unlock ability to generate new sensory hair cells
22.02.2017 | Brigham and Women's Hospital

nachricht New insights into the information processing of motor neurons
22.02.2017 | Max Planck Florida Institute for Neuroscience

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>