Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Drug that interrupts a key stage of cell division shows promise in patients with advanced solid tumours

09.11.2006
One of the first studies to investigate the effects of a new anti-cancer drug in patients with advanced or metastatic solid tumours has shown that it is capable of halting progression of the disease, and the study has provided the first proof of the drug’s mechanism of action.

The drug works by blocking aurora proteins, which play a key role in cell division and are implicated in the onset and progression of cancer. It was discovered and characterised by scientists at Nerviano Medical Sciences in Italy.

Dr Maja de Jonge, a medical oncologist at the Erasmus University Medical Centre, Rotterdam, The Netherlands, told the EORTC-NCI-AACR [1] Symposium on Molecular Targets and Cancer Therapeutics in Prague today (Wednesday 8 November): “So far we have tested the drug in 36 patients in a phase I clinical trial. All the patients had advanced solid cancers that were progressing at the time they entered the trial. However, in seven of these patients the disease stabilised and has remained stable in four of the patients for seven months or more. Without the drug we would have expected to see their disease continue to progress.”

Aurora proteins belong to a family of enzymes that regulate the different steps in mitosis when the cell nucleus divides into two identical cells. The enzymes help the dividing cell to share its genetic material between the daughter cells, and they are essential for cell proliferation. Aurora proteins are over-expressed in cancer and this causes unequal distribution of the genetic material, creating abnormal cells – the hallmark of cancer. However, it is only recently that scientists have started to investigate the proteins as targets for anti-cancer therapies, and this is one of the first studies to investigate an aurora kinase inhibitor in patients.

... more about:
»Cancer »Jonge »Solid »mg/m2 »tumours

Dr de Jonge and her colleagues tested an aurora kinase inhibitor PHA-739358. Her patients had a range of solid tumours: colorectal (9), pancreatic (3), sarcoma (5), ovarian (2), kidney (2), prostate (2), cancer of the bile ducts (2), oesophageal (3) and eight others.

They tested seven different dose levels of the drug (measured in milligrams per squared metre of body surface area (mg/m2)). Two patients could not tolerate well a dose of 400 mg/m2, and 330 mg/m2 appeared to be the recommended dose. The drug was infused into the patients’ veins over a six-hour period on days 1, 8 and 15 every four weeks.

Dr de Jonge said: “So far adverse effects have been relatively minor, consisting of a transient hypertensive episode in one patient, nausea, loss of appetite, diarrhoea, a temporary shortness of white blood cells (neutropenia), which was serious enough at 400 mg/m2 in one patient for the drug to be omitted on day eight and in another patient on day 15.

“Once the dose levels reached 190 mg/m2, tests on skin biopsies showed that the drug was inhibiting the aurora B protein – in other words it was beginning to do what we expected it to.

“The aurora B protein is responsible for phosphorylating histone H3 – a protein involved in the structure of chromatin (the strands of DNA that make up chromosomes) in cells. Inhibition of aurora B results in the inhibition of phosphorylation of histone H3, thereby blocking that step in cell division. This study shows, for the first time, that the aurora kinase inhibitor PHA-739358 inhibits phosphorylation of histone H3 in the skin of patients, and therewith provides a proof for its (or one of its) mechanisms of action.”

The researchers are continuing to recruit patients in order to define the safety of the drug and the recommended dose for subsequent studies. However, they believe the results so far are promising.

“The clinical trial has proved the concept that inhibition of the aurora protein disrupts an important stage of cell division, once the dose levels reaches 190m/m2,” said Dr de Jonge. “Patients are able to tolerate the drug and dosing schedule, and it is exciting that, at this early stage in the drug’s development, there is evidence of its ability to stabilise advanced disease.”

[1]EORTC [European Organisation for Research and Treatment of Cancer, NCI [National Cancer Institute], AACR [American Association for Cancer Research].

Emma Mason | alfa
Further information:
http://www.eortc.org

Further reports about: Cancer Jonge Solid mg/m2 tumours

More articles from Life Sciences:

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

nachricht The Nagoya Protocol Creates Disadvantages for Many Countries when Applied to Microorganisms
05.12.2016 | Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>