Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Drug that interrupts a key stage of cell division shows promise in patients with advanced solid tumours

09.11.2006
One of the first studies to investigate the effects of a new anti-cancer drug in patients with advanced or metastatic solid tumours has shown that it is capable of halting progression of the disease, and the study has provided the first proof of the drug’s mechanism of action.

The drug works by blocking aurora proteins, which play a key role in cell division and are implicated in the onset and progression of cancer. It was discovered and characterised by scientists at Nerviano Medical Sciences in Italy.

Dr Maja de Jonge, a medical oncologist at the Erasmus University Medical Centre, Rotterdam, The Netherlands, told the EORTC-NCI-AACR [1] Symposium on Molecular Targets and Cancer Therapeutics in Prague today (Wednesday 8 November): “So far we have tested the drug in 36 patients in a phase I clinical trial. All the patients had advanced solid cancers that were progressing at the time they entered the trial. However, in seven of these patients the disease stabilised and has remained stable in four of the patients for seven months or more. Without the drug we would have expected to see their disease continue to progress.”

Aurora proteins belong to a family of enzymes that regulate the different steps in mitosis when the cell nucleus divides into two identical cells. The enzymes help the dividing cell to share its genetic material between the daughter cells, and they are essential for cell proliferation. Aurora proteins are over-expressed in cancer and this causes unequal distribution of the genetic material, creating abnormal cells – the hallmark of cancer. However, it is only recently that scientists have started to investigate the proteins as targets for anti-cancer therapies, and this is one of the first studies to investigate an aurora kinase inhibitor in patients.

... more about:
»Cancer »Jonge »Solid »mg/m2 »tumours

Dr de Jonge and her colleagues tested an aurora kinase inhibitor PHA-739358. Her patients had a range of solid tumours: colorectal (9), pancreatic (3), sarcoma (5), ovarian (2), kidney (2), prostate (2), cancer of the bile ducts (2), oesophageal (3) and eight others.

They tested seven different dose levels of the drug (measured in milligrams per squared metre of body surface area (mg/m2)). Two patients could not tolerate well a dose of 400 mg/m2, and 330 mg/m2 appeared to be the recommended dose. The drug was infused into the patients’ veins over a six-hour period on days 1, 8 and 15 every four weeks.

Dr de Jonge said: “So far adverse effects have been relatively minor, consisting of a transient hypertensive episode in one patient, nausea, loss of appetite, diarrhoea, a temporary shortness of white blood cells (neutropenia), which was serious enough at 400 mg/m2 in one patient for the drug to be omitted on day eight and in another patient on day 15.

“Once the dose levels reached 190 mg/m2, tests on skin biopsies showed that the drug was inhibiting the aurora B protein – in other words it was beginning to do what we expected it to.

“The aurora B protein is responsible for phosphorylating histone H3 – a protein involved in the structure of chromatin (the strands of DNA that make up chromosomes) in cells. Inhibition of aurora B results in the inhibition of phosphorylation of histone H3, thereby blocking that step in cell division. This study shows, for the first time, that the aurora kinase inhibitor PHA-739358 inhibits phosphorylation of histone H3 in the skin of patients, and therewith provides a proof for its (or one of its) mechanisms of action.”

The researchers are continuing to recruit patients in order to define the safety of the drug and the recommended dose for subsequent studies. However, they believe the results so far are promising.

“The clinical trial has proved the concept that inhibition of the aurora protein disrupts an important stage of cell division, once the dose levels reaches 190m/m2,” said Dr de Jonge. “Patients are able to tolerate the drug and dosing schedule, and it is exciting that, at this early stage in the drug’s development, there is evidence of its ability to stabilise advanced disease.”

[1]EORTC [European Organisation for Research and Treatment of Cancer, NCI [National Cancer Institute], AACR [American Association for Cancer Research].

Emma Mason | alfa
Further information:
http://www.eortc.org

Further reports about: Cancer Jonge Solid mg/m2 tumours

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>