Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Polymers show promise for lab-on-a-chip technology

01.09.2006
Researchers are touting the use of liquid crystalline polymers (LCP) as a viable tool for use in devices such as the sought-after lab-on-a-chip technology.

University of Alberta researchers, collaborating with colleagues at the Eindhoven University of Technology and Phillips Research Laboratories in the Netherlands, have shown that LCP, when formed into a thin film on a glass backing, can be fabricated and patterned on a microscale. The research was published recently in the Journal of Material Chemistry.

"Based on our research of liquid crystalline polymers, we anticipate the emergence of exciting new techniques in microfabrication that can be used to cheaply and efficiently pattern response materials," said Anastasia Elias, a PhD student in Dr. Michael Brett's group in the U of A Department of Electrical and Computer Engineering and the first author of the paper.

LCPs are often described as "artificial muscles" that can convert thermal, chemical and electromagnetic stimuli into mechanical energy, Elias said. LCPs are polymers made from liquid crystalline molecules, which are well-known for their use in display applications, such as laptop computer screens, where they are used for their unique optical properties.

... more about:
»LCP »Lab-on-a-Chip »Polymers »microscale

Elias and her colleagues conducted a number of preliminary LCP experiments on a microscale in order to better understand and describe the material's mechanical properties. They believe the material holds promise as a microscale building block. It's now up to other engineers and scientist to take this knowledge and create useful microscale devices.

The most commonly cited goal among micro- and nanoscale researchers is to create a lab-on-a-chip – a tiny system that could be used, for example, to analyze blood samples and biopsies much faster, cheaper and more comprehensively than current methods.

In the past, most microscale research and development funds have targeted silicon, the fundamental material in the semiconductor industry. But LCPs are less brittle and more pliable than silicon, Elias said, adding that LCP devices could be tailored to respond to specific external stimuli, such as temperature changes and UV radiation exposure, which could makes them easier to activate than silicon. And, perhaps most importantly of all, LCPs are less expensive than silicon and potentially easier to process, Elias said.

"Ultimately, we believe liquid crystalline polymers will be fully integrated in microelectromechanical systems, such as the emerging lab-on-a-chip applications," she said.

Ryan Smith | EurekAlert!
Further information:
http://www.ualberta.ca

Further reports about: LCP Lab-on-a-Chip Polymers microscale

More articles from Life Sciences:

nachricht The irresistible fragrance of dying vinegar flies
16.08.2017 | Max-Planck-Institut für chemische Ökologie

nachricht How protein islands form
15.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

Im Focus: Scientists improve forecast of increasing hazard on Ecuadorian volcano

Researchers from the University of Miami (UM) Rosenstiel School of Marine and Atmospheric Science, the Italian Space Agency (ASI), and the Instituto Geofisico--Escuela Politecnica Nacional (IGEPN) of Ecuador, showed an increasing volcanic danger on Cotopaxi in Ecuador using a powerful technique known as Interferometric Synthetic Aperture Radar (InSAR).

The Andes region in which Cotopaxi volcano is located is known to contain some of the world's most serious volcanic hazard. A mid- to large-size eruption has...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

New thruster design increases efficiency for future spaceflight

16.08.2017 | Physics and Astronomy

Transporting spin: A graphene and boron nitride heterostructure creates large spin signals

16.08.2017 | Materials Sciences

A new method for the 3-D printing of living tissues

16.08.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>