Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Salmonella bacteria use RNA to assess and adjust magnesium levels

10.04.2006
Researchers at Washington University School of Medicine in St. Louis have added a gene in the bacterium Salmonella to the short list of genes regulated by a new mechanism known as the riboswitch.

The Salmonella riboswitch is the first to sense and respond to a metal ion, substantially expanding the types of molecules that riboswitches can detect to help cells assess and react to their environment.

First identified in 2002, riboswitches sense when a protein is needed and stop the creation of the protein if it isn’t. That in itself isn’t remarkable--scientists have been aware for decades of sensors in the cell that can cause molecules to bind to DNA to turn protein production on and off.

A riboswitch, however, doesn’t rely on anything binding to DNA; instead, the switch is incorporated into messages for construction of proteins. These messages are protein-building instructions copied from DNA into strands of RNA. The riboswitch is a sensor within the RNA that can twist it into different configurations that block or facilitate the production of the protein encoded in the message.

Previously identified riboswitches respond to organic compounds such as nucleotides and sugars. The Salmonella riboswitch, reported in the April 7 issue of the journal Cell, responds to magnesium ions, key elements in the stability of cell membranes and reactants in an energy-making process that fuels most cells.

"Magnesium ions are essential to the stability of several different critical processes and structures in the cell, so there has to be a fairly intricate set of regulators to maintain consistent levels of it," says senior investigator Eduardo A. Groisman, Ph.D., professor of molecular microbiology. "To approach such a complex system, we study it in a simpler organism, the Salmonella bacterium."

Groisman and his colleagues uncovered the magnesium riboswitch while they were investigating the MgtA gene, which is controlled by the major regulator of Salmonella virulence, the phoP/phoQ system. The MgtA gene codes for a protein that can transport magnesium across the bacterium’s cell membrane. Groisman’s group showed 10 years ago that the phoP/phoQ system controls when Salmonella makes MgtA.

When Salmonella experiences a low-magnesium environment, phoQ chemically modifies phoP. The changed phoP binds to DNA, increasing the number of times instructions for making MgtA and over 100 other proteins are copied from DNA. But when Salmonella encounters a high-magnesium environment, phoQ deactivates phoP, and fewer copies of the instructions for making MgtA are made.

When Groisman and his colleagues created a mutant strain lacking the phoQ gene, though, they were surprised to find that production of the instructions to make the MgtA protein could still somehow respond to magnesium, producing less of its protein at high magnesium levels.

Researchers used a computer program to determine how RNA copied from the MgtA gene might be folding up. The program predicted RNA copied from the gene could have two significantly different configurations. Because of the significant differences between these configurations, Groisman, who is also a Howard Hughes Medical Institute investigator, became interested in a region at the beginning of the RNA strand that contains no protein-building instructions. He theorized that it might be a riboswitch that responded to high magnesium levels by twisting the RNA into a configuration where its protein-building instructions somehow could not be used or were invalidated.

"One of our tests to see if this was something more than a computer fantasy was to take this segment that contains no protein-building instructions off the MgtA gene and paste it into another genetic configuration," Groisman says. "We wanted to see if it conferred sensitivity to magnesium levels, which it did."

In addition, Groisman’s group showed that one RNA configuration was common in low magnesium levels while another was common in high magnesium levels.

They also searched the genomes of other bacteria with MgtA genes to see if their DNA included a sequence similar to the riboswitch in Salmonella. In six other bacteria, a similar sequence precedes the MgtA gene and can twist RNA copied from it into different configurations.

"Normally you would expect to find that a DNA sequence that is conserved among different species is encoding part of a protein," Groisman says. "But here we’re talking about a part of a message that does not encode a protein. So why would it be conserved? There must be some important role that the sequence is fulfilling that is leading to its conservation, such as giving the cell expanded ability to sense and respond to magnesium levels."

Follow-up inquiries are already underway to locate the riboswitch’s "brain"--the section of the RNA strand that responds to magnesium; and to learn how the high-magnesium configuration of the RNA disrupts final production of the protein.

Michael Purdy | EurekAlert!
Further information:
http://www.wustl.edu

More articles from Life Sciences:

nachricht Newly designed molecule binds nitrogen
23.02.2018 | Julius-Maximilians-Universität Würzburg

nachricht Atomic Design by Water
23.02.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>