Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Science Class Experiment Reveals Vitamin B12 Secret

23.02.2006


For decades, scientists have wondered how living organisms manufacture the essential vitamin B12. Now, using laundry whitener and dirt-dwelling bacteria—the everyday ingredients of an undergraduate science experiment—researchers may have found the major clue they need to solve the mystery.


Under ultraviolet light in a Petri dish containing laundry whitener, symbiotic bacteria with a mutant bluB gene (lower right) fluoresce brightly, while the same bacteria with no mutation only glow slightly (top right), and bacteria with another mutation (in the exoY gene) are completely dark.



Researchers led by Graham Walker, a Howard Hughes Medical Institute (HHMI) professor and American Cancer Society research professor at the Massachusetts Institute of Technology, have discovered the first known mutant bacteria with a specific defect in a gene involved in the least-understood part of B12 synthesis. They report their findings in the early online edition of the Proceedings of the National Academy of Sciences, published February 20, 2006. HHMI professors are leading research scientists who received $1 million grants from the Institute to find ways to bring the excitement of the research lab into undergraduate science classrooms.

In the ancient world, B12 was probably catalyzing reactions before cells even existed. Now, all animals need B12 to help make the building blocks of DNA, and children need enough of the vitamin to help their brain develop normally. Most people consume enough B12 through animal products or fortified foods in their diet. On the other hand, animals that do not eat other animal products acquire the nutrient from bacteria in their guts or from bacteria-infected dirt on their plant food. An estimated one-quarter of people older than 60 in this country have trouble absorbing B12. B12 deficiency can lead to nerve damage, anemia, and forgetfulness.


Walker’s team’s genetic discovery was made possible by a gimmick Walker designed to capture the attention of undergraduate biology students in the early 1980s. When he added a laundry whitener to a lab dish, the symbiotic bacteria he studied glowed in ultraviolet light, just as the additive makes clothes look brighter in the sun.

The teaching trick soon became a popular tool in Walker’s lab for research that had nothing to do with vitamin B12. There, researchers have been focusing on how symbiotic bacteria form and invade the nodules in alfalfa roots that provide the plant with nitrogen and the bacteria with food. The scientists noticed that some of the bacteria on the glowing lab dishes did not light up. These stubborn dark spots revealed bacteria missing key genes needed to construct and enter the nodules in plant roots, they discovered. By analyzing various mutations, the researchers were able to track the molecular details of how the bacteria provide the plant with the nutrients it needs to grow.

Several years ago, Walker’s graduate student Gordon Campbell decided to look for symbiosis defects in bacterial mutants that, instead of being dark spots on the glowing lab dish, were even brighter than their normal counterparts. His findings enabled Campbell and his co-authors to answer a question being asked by many researchers studying B12 synthesis.

“That is what is so great about basic research,” Walker said. “It finds answers to things you cannot get at in a direct way.”

Campbell isolated the brightest mutants and put them onto the roots of alfalfa seedlings. Healthy symbiotic partnerships show up on the plant roots as long pink nodules stuffed with bacteria. In contrast, seedlings sharing a dish with the most obviously defective bacteria were stunted and their roots had small white nubs with barely any bacteria inside. For one of these bright mutants, it turned out that the root of the problem was the mutant bacteria’s inability to produce B12.

Adopting nomenclature traditional in their field, the researchers named the mutated gene bluB, after a similar gene found in another kind of bacteria.

“The important clue came when we noticed bluB was grouped with other genes important for making vitamin B12 in the other bacterium,” Walker said. “That’s not something we are expert in.” So the researchers contacted co-author John Roth, a professor of molecular biology at University of California, Davis, who has studied in detail the intricate series of steps required to assemble B12, the largest known natural compound that is not made out of repeating units.

“Out of our conversations came the idea that bluB might be required for an unknown part of the pathway,” Walker said. “B12 is a big, complicated molecule. Researchers have been unable to crack the problem of how to make the lower ligand,” a segment of the molecule known as DMB.

It was a simple experiment, said Michiko Taga, a postdoctoral fellow and co-first author of the paper. Taga took over the research when Campbell graduated. “If the mutant was broken because it could not make DMB,” she said, “then if we added DMB back it should be okay. So we added DMB, and the bacteria went back to acting like ordinary [symbiotic] bacteria. That was the defining experiment.”

When the researchers provided DMB so that the bacteria did not have to manufacture it themselves, the bacteria’s extraordinary brilliance subsided to a more uniform fluorescence on the lab dish with the laundry whitener. And in the lab dish with the seedlings, the restored bacteria produced a bigger, healthier plant. Chemist and co-author Kavita Mistry followed up with biochemical experiments to prove that the bluB mutant could not make B12 without added DMB.

“Our findings just mean bluB is necessary for the reaction,” Taga said. "We are currently doing experiments to show that it directly catalyzes the reaction.”

But Roth said the discovery gives him hope for finding all the steps in the pathway for synthesizing B12. “This is the part that has resisted genetics and chemistry,” he explained. “We’ve tried it. Others have tried it. This appears to be the first enzyme dedicated to synthesizing the part.”

Other bacteria, such as the Salmonella that Roth studies, appear to substitute other molecules in place of DMB, stymieing genetic approaches. But the form of B12 that people need contains DMB.

The discovery of the bluB mutant may overturn a theory that DMB spontaneously forms without enzymes to speed up the reaction, Roth said. Before the bluB mutant was identified, that theory made sense because the reactions that make B12 do not require energy, in contrast to most biosynthetic reactions.

Taga and Walker are following up to figure out how the bluB mutation affects the symbiotic relationship between the bacteria and the plant.

Jennifer Donovan | EurekAlert!
Further information:
http://www.hhmi.org

More articles from Life Sciences:

nachricht Repairing damaged hearts with self-healing heart cells
22.08.2017 | National University Health System

nachricht Biochemical 'fingerprints' reveal diabetes progression
22.08.2017 | Umea University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Cholesterol-lowering drugs may fight infectious disease

22.08.2017 | Health and Medicine

Meter-sized single-crystal graphene growth becomes possible

22.08.2017 | Materials Sciences

Repairing damaged hearts with self-healing heart cells

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>