Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Three deadly parasite genomes sequenced

15.07.2005


An international group of researchers working in more than 20 laboratories around the globe have determined genetic blueprints for the parasites that cause three deadly insect-borne diseases: African sleeping sickness, leishmaniasis and Chagas disease. The research, funded in part by the National Institute of Allergy and Infectious Diseases (NIAID), part of the National Institutes of Health, is published in this week’s issue of Science. Knowing the full genetic make-up of the three parasites--Trypanosoma brucei, Trypanosoma cruzi and Leishmania major--could lead to better ways to treat or prevent the diseases they cause.



"Although relatively unfamiliar in the United States, the collective misery caused by these diseases throughout the world is considerable. Having these genomes in hand will give us many new targets for drug and vaccine development," says NIAID Director Anthony S. Fauci, M.D.

All three diseases are spread by insects. T. brucei, which causes sleeping sickness, is spread by the tsetse fly and is found in sub-Saharan Africa. The World Health Organization estimates there may be as many as 500,000 cases of sleeping sickness each year. If left untreated, sleeping sickness is fatal. Various forms of leishmaniasis are spread by the sandfly and are endemic in 88 countries on five continents. Visceral leishmaniasis, also known as kala azar, is the most severe form of the disease and causes high fever, a swollen spleen and severe weight loss before killing its victims. Cutaneous leishmaniasis, also known as "Baghdad boil," produces numerous skin ulcers that can leave sufferers permanently scarred. Some 1,000 American service members have been diagnosed with cutaneous leishmaniasis according to testimony by Walter Reed Army Institute of Research’s Alan Magill, M.D., at an Institute of Medicine meeting in May 2005. T. cruzi causes Chagas disease and is spread through the infected feces of an insect sometimes called the "kissing bug" for its habit of biting near a person’s mouth. Found throughout Central and South America, Chagas disease is particularly prevalent among the poor and claims 50,000 lives each year.


NIAID supported the sequencing projects through grants to Kenneth Stuart, Ph.D., and Peter Myler, Ph.D., of Seattle Biomedical Research Institute (SBRI); to Najib El-Sayed, Ph.D., of The Institute for Genome Research (TIGR), Rockville, MD; and to Bjorn Andersson, Ph.D, of the Karolinska Institute in Stockholm, Sweden.

"One of the biggest surprises to come out of the genome sequencing projects is that these parasites--despite major differences in how they are spread and how they cause disease--nevertheless have a core of 6,200 genes in common," says Martin John Rogers, Ph.D., of NIAID’s Parasitology and International Programs Branch. At a genetic level, the similarities among these parasites outweigh their differences. The shared genes give scientists a vastly expanded array of targets for development of new drugs that conceivably could work against all three parasites, explains Dr. Rogers. Conversely, he adds, analyzing the relatively smaller ways in which the organisms diverge genetically could help researchers design vaccines, drugs and improved diagnostics targeted to each of the three parasites.

In addition to the publication of the three genomes, this week’s issue of Science also includes a paper by NIAID grantee Rick Tarleton, Ph.D., of the University of Georgia, Athens, detailing T. cruzi’s proteome--the set of expressed proteins encoded by its genome. This is a significant achievement, notes Dr. Rogers, because T. cruzi, like many parasites, has multiple forms in its lifecycle and produces differing suites of proteins at each stage. The proteomic analysis revealed the presence of numerous stage-specific proteins, providing clues about how the parasite exploits its insect and mammalian hosts. This, in turn, suggests ways to battle the parasite with drugs specific to each life stage, says Dr. Rogers. At present, there are few therapies for Chagas disease, the condition caused by T. cruzi parasites, and the available drugs are ineffective and have significant adverse side effects. Taken together, Dr. Rogers says, the wealth of information contained in the sequenced genomes opens new avenues to tackle these often forgotten diseases.

Anne A. Oplinger | EurekAlert!
Further information:
http://www.niaid.nih.gov

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>