Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Transgene Aspen And Cloned Karelian Birch

17.06.2003


Long ago genetic engineering got deep reach into pharmacological and food industry, agriculture and medicine. The trees are no exclusion, but genetic engineers started to deal with them approximately ten years later than with other objects: the trees are too difficult for genetic investigations and manipulations. The wood plant genetic engineering activities are now in full swing in different countries of the world, including Russia. When improving trees through classical selection methods, the researchers first of all focus on the growth rate, wood quality, resistance to vermin and diseases, herbicides, salts and other stresses. Genetic engineering allows to do the same but much quicker. Russian scientists have obtained several accelerated growth wood species.



Specialists of the Siberian Institute of Physiology and Biochemistry of Plants, Northern Branch, Russian Academy of Sciences (Irkutsk), have applied classical methods and transformed via the corn gene ugt the aspen, poplar and Cembra pine (the latter being traditionally miscalled cedar). This gene codes the synthesis of the enzyme, which ensures the high level of vegetative hormone auxin. Auxin is necessary for the plant growth and development, and the trees with the respective corn gene do develop much quicker. Such plants could be used in the future in dedicated plantations with a short turnus. These plantations could be set up around woodworking enterprises. Such plantations will save primeval taiga woods from felling and would allow to reduce transportation costs for wood delivery to woodworking sites.

The researchers from the Research Institute of Wood Genetics and Selection (Voronezh) applied a different technology of getting trees from the cell culture. They have chosen the most valuable species - Karelian birch. The researchers selected the trees with the most beautiful patterned timber, got the cell culture – calluses - from their stems, and cultivated the birch-trees from the calluses. The long-term field trials have proved that the cloned trees grow well, within 3-4 years their stems become tuberous or ribbed – these are the exterior signs patterned timber. When the tree is 5-8 years old, all the birch-trees without exception are patterned. If the Karelian birch is cultivated from the seeds under a common technology, the signs of patterned timber appera much later – at the age of 10 to12.


The ability to manipulate genes is one of the greatest achievements of the 20th century biology, but it also imposes serious responsibility on the scientists for possible environmental consequences, which should be taken into account along with the growing economic benefits from trangenes. The prospects for utilization of accelerated development plants look promising, but a lot of Russian researchers advise that thorough analysis should be made of possible consequences before new technologies are launched into series. Accelerated growth trees may exhaust the soil quickly, and genetically modified pollen can change the natural structure of forest population. So far neither Russia or other countries have convincing enough responses to these questions.

Sergey Komarov | alfa

More articles from Life Sciences:

nachricht The dense vessel network regulates formation of thrombocytes in the bone marrow
25.07.2017 | Rudolf-Virchow-Zentrum für Experimentelle Biomedizin der Universität Würzburg

nachricht Fungi that evolved to eat wood offer new biomass conversion tool
25.07.2017 | University of Massachusetts at Amherst

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA mission surfs through waves in space to understand space weather

25.07.2017 | Physics and Astronomy

Strength of tectonic plates may explain shape of the Tibetan Plateau, study finds

25.07.2017 | Earth Sciences

The dense vessel network regulates formation of thrombocytes in the bone marrow

25.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>