Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Transgene Aspen And Cloned Karelian Birch

17.06.2003


Long ago genetic engineering got deep reach into pharmacological and food industry, agriculture and medicine. The trees are no exclusion, but genetic engineers started to deal with them approximately ten years later than with other objects: the trees are too difficult for genetic investigations and manipulations. The wood plant genetic engineering activities are now in full swing in different countries of the world, including Russia. When improving trees through classical selection methods, the researchers first of all focus on the growth rate, wood quality, resistance to vermin and diseases, herbicides, salts and other stresses. Genetic engineering allows to do the same but much quicker. Russian scientists have obtained several accelerated growth wood species.



Specialists of the Siberian Institute of Physiology and Biochemistry of Plants, Northern Branch, Russian Academy of Sciences (Irkutsk), have applied classical methods and transformed via the corn gene ugt the aspen, poplar and Cembra pine (the latter being traditionally miscalled cedar). This gene codes the synthesis of the enzyme, which ensures the high level of vegetative hormone auxin. Auxin is necessary for the plant growth and development, and the trees with the respective corn gene do develop much quicker. Such plants could be used in the future in dedicated plantations with a short turnus. These plantations could be set up around woodworking enterprises. Such plantations will save primeval taiga woods from felling and would allow to reduce transportation costs for wood delivery to woodworking sites.

The researchers from the Research Institute of Wood Genetics and Selection (Voronezh) applied a different technology of getting trees from the cell culture. They have chosen the most valuable species - Karelian birch. The researchers selected the trees with the most beautiful patterned timber, got the cell culture – calluses - from their stems, and cultivated the birch-trees from the calluses. The long-term field trials have proved that the cloned trees grow well, within 3-4 years their stems become tuberous or ribbed – these are the exterior signs patterned timber. When the tree is 5-8 years old, all the birch-trees without exception are patterned. If the Karelian birch is cultivated from the seeds under a common technology, the signs of patterned timber appera much later – at the age of 10 to12.


The ability to manipulate genes is one of the greatest achievements of the 20th century biology, but it also imposes serious responsibility on the scientists for possible environmental consequences, which should be taken into account along with the growing economic benefits from trangenes. The prospects for utilization of accelerated development plants look promising, but a lot of Russian researchers advise that thorough analysis should be made of possible consequences before new technologies are launched into series. Accelerated growth trees may exhaust the soil quickly, and genetically modified pollen can change the natural structure of forest population. So far neither Russia or other countries have convincing enough responses to these questions.

Sergey Komarov | alfa

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>