Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Transgene Aspen And Cloned Karelian Birch

17.06.2003


Long ago genetic engineering got deep reach into pharmacological and food industry, agriculture and medicine. The trees are no exclusion, but genetic engineers started to deal with them approximately ten years later than with other objects: the trees are too difficult for genetic investigations and manipulations. The wood plant genetic engineering activities are now in full swing in different countries of the world, including Russia. When improving trees through classical selection methods, the researchers first of all focus on the growth rate, wood quality, resistance to vermin and diseases, herbicides, salts and other stresses. Genetic engineering allows to do the same but much quicker. Russian scientists have obtained several accelerated growth wood species.



Specialists of the Siberian Institute of Physiology and Biochemistry of Plants, Northern Branch, Russian Academy of Sciences (Irkutsk), have applied classical methods and transformed via the corn gene ugt the aspen, poplar and Cembra pine (the latter being traditionally miscalled cedar). This gene codes the synthesis of the enzyme, which ensures the high level of vegetative hormone auxin. Auxin is necessary for the plant growth and development, and the trees with the respective corn gene do develop much quicker. Such plants could be used in the future in dedicated plantations with a short turnus. These plantations could be set up around woodworking enterprises. Such plantations will save primeval taiga woods from felling and would allow to reduce transportation costs for wood delivery to woodworking sites.

The researchers from the Research Institute of Wood Genetics and Selection (Voronezh) applied a different technology of getting trees from the cell culture. They have chosen the most valuable species - Karelian birch. The researchers selected the trees with the most beautiful patterned timber, got the cell culture – calluses - from their stems, and cultivated the birch-trees from the calluses. The long-term field trials have proved that the cloned trees grow well, within 3-4 years their stems become tuberous or ribbed – these are the exterior signs patterned timber. When the tree is 5-8 years old, all the birch-trees without exception are patterned. If the Karelian birch is cultivated from the seeds under a common technology, the signs of patterned timber appera much later – at the age of 10 to12.


The ability to manipulate genes is one of the greatest achievements of the 20th century biology, but it also imposes serious responsibility on the scientists for possible environmental consequences, which should be taken into account along with the growing economic benefits from trangenes. The prospects for utilization of accelerated development plants look promising, but a lot of Russian researchers advise that thorough analysis should be made of possible consequences before new technologies are launched into series. Accelerated growth trees may exhaust the soil quickly, and genetically modified pollen can change the natural structure of forest population. So far neither Russia or other countries have convincing enough responses to these questions.

Sergey Komarov | alfa

More articles from Life Sciences:

nachricht Chains of nanogold – forged with atomic precision
23.09.2016 | Suomen Akatemia (Academy of Finland)

nachricht Self-assembled nanostructures hit their target
23.09.2016 | King Abdullah University of Science and Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

Im Focus: Launch of New Industry Working Group for Process Control in Laser Material Processing

At AKL’16, the International Laser Technology Congress held in May this year, interest in the topic of process control was greater than expected. Appropriately, the event was also used to launch the Industry Working Group for Process Control in Laser Material Processing. The group provides a forum for representatives from industry and research to initiate pre-competitive projects and discuss issues such as standards, potential cost savings and feasibility.

In the age of industry 4.0, laser technology is firmly established within manufacturing. A wide variety of laser techniques – from USP ablation and additive...

Im Focus: New laser joining technologies at ‘K 2016’ trade fair

Every three years, the plastics industry gathers at K, the international trade fair for plastics and rubber in Düsseldorf. The Fraunhofer Institute for Laser Technology ILT will also be attending again and presenting many innovative technologies, such as for joining plastics and metals using ultrashort pulse lasers. From October 19 to 26, you can find the Fraunhofer ILT at the joint Fraunhofer booth SC01 in Hall 7.

K is the world’s largest trade fair for the plastics and rubber industry. As in previous years, the organizers are expecting 3,000 exhibitors and more than...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Experts from industry and academia discuss the future mobile telecommunications standard 5G

23.09.2016 | Event News

ICPE in Graz for the seventh time

20.09.2016 | Event News

Using mathematical models to understand our brain

16.09.2016 | Event News

 
Latest News

Chains of nanogold – forged with atomic precision

23.09.2016 | Life Sciences

New leukemia treatment offers hope

23.09.2016 | Health and Medicine

Self-assembled nanostructures hit their target

23.09.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>