Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

At last: Just three cell types detect light in the eye

16.06.2003


Putting to rest years of controversy, an international research team led by Johns Hopkins scientists has discovered that the eye’s job of detecting light is most likely carried out by just three cell types.


Easy-to-detect tau-lacZ protein turns melanopsin-expressing cells in the retina of a mouse into blue beacons. The long blue strands are the cells’ axons, which head into the optic nerve and eventually end in parts of the brain that control the internal clock and the opening and closing of the pupil.



Writing in the June 15 advance online section of Nature, the team reports that rods, cones and special retinal cells that make a protein called melanopsin together account for the entirety of a mouse’s reaction to light levels. Others have proposed a role for cells that make proteins called cryptochromes, but that doesn’t seem to be the case for mice -- and probably not for man -- say the researchers.

"We’re fairly confident the rod/cone system and the melanopsin system are the mammalian eye’s only two systems for detecting light levels," says King-Wai Yau, Ph.D., professor of neuroscience in the Johns Hopkins School of Medicine’s Institute for Basic Biomedical Science and a Howard Hughes Medical Institute investigator. "Never say never, but there’s no evidence for a third system right now."


Producing visual images is the eye’s most well-recognized job, but detecting and reacting to light levels is critical to well-being. With this accessory ability, the eye maintains the body’s internal clock, the pupil’s ability to react to light, and the motivation to be active during the appropriate part of the day. Without signals from the three cell types, mice lost these normal abilities, the scientists report.

For their experiments, Yau and postdoctoral fellow Samer Hattar, Ph.D., removed the genes for three key proteins, each of which helps pass along light information from rods, cones or melanopsin-producing cells. Previously, the traditional way to prevent information from rods and cones -- also the eye’s vision-producing cells -- was by using a mouse model in which rods and cones degenerate.

"We wanted to avoid the uncertainty of the traditional ’rod-less, cone-less’ mouse," says Hattar. "With that model, you can’t be sure what percentage of the rods and cones are gone, and you can’t be sure that the degenerated retina itself isn’t affecting your observations."

Cross-breeding these single knockout mice eventually produced offspring missing all three proteins (triple knockouts), those who had a "half-dose" of each of the three proteins, and those with various combinations of protein levels.

Experiments at Johns Hopkins with Robert Lucas from Imperial College London showed that the triple knockouts couldn’t adjust their pupils at all in response to light. In experiments at the University of Toronto, co-author Nicholas Mrosovsky discovered that the triple knockouts also didn’t appropriately adjust their activity levels when exposed to light. Mice with a half-dose of each of the three proteins reacted normally in both experiments.

"Even if its internal clock says it’s night, a normal mouse exposed to bright light will become less active, hide or even go to sleep," says Yau. "It’s thought of as a change in motivation, perhaps the mouse’s recognition that in light -- even if it’s supposed to be nighttime -- a predator has a better chance. However, triple knockout mice were as likely to be active in bright light as in darkness."

The researchers designed additional experiments to rule out any contribution from cryptochrome proteins, which are involved in light detection in fruit flies. Because each light-sensitive protein is most sensitive to a characteristic wavelength, or color, of light, exposing mice to light of a single wavelength can reveal the protein most important for the eye’s non-visual functions.

In these experiments, conducted at the Imperial College London, colleagues discovered that traditional rod-less/cone-less mice were best able to "reset" their internal clocks when exposed to the same color of light that is favored by melanopsin-producing cells, not cryptochromes.

"In fruit flies, there are several systems that contribute to light detection, and in some animals, such as zebrafish and birds, light detection isn’t even limited to the eye," says Hattar, who is now separating the light detecting roles of rods and cones, something not possible with traditional rod-less/cone-less mice. "But in mammals, all these functions -- vision, circadian rhythm, light-induced activity -- exist in a single place, the retina, and in just two systems."

Among blind people -- whose rods and cones don’t work -- melanopsin-producing cells remaining in the eye seem to provide enough information to keep the body and mind on schedule. However, people can develop circadian rhythm, or internal clock, disturbances after loss of the eyes, such as in an accident.

The U.S. authors were funded by the U.S. National Eye Institute and the Howard Hughes Medical Institute. The Canadian researcher was funded by the Canadian Institutes of Health Research, and the U.K. researchers were funded by the U.K. Biotechnology and Biological Sciences Research Council and the Wellcome Trust.

Authors on the report are Hattar and Yau of Johns Hopkins; Lucas, Stewart Thompson, Mark Hankins and Russell Foster of Imperial College London; Mrosovsky of the University of Toronto; Ronald Douglas of City University, London; Janis Lem of Tufts University; Martin Biel of the Ludwig-Maximilians University, Munchen, Germany; and Franz Hofmann of Munchen Technical University, Germany.

Joanna Downer | EurekAlert!
Further information:
http://www.hopkinsmedicine.org/press/2002/FEBRUARY/020221.htm
http://www.hopkinsmedicine.org/press/2003/January/030114.htm
http://www.hopkinsmedicine.org

More articles from Life Sciences:

nachricht The interactome of infected neural cells reveals new therapeutic targets for Zika
23.01.2017 | D'Or Institute for Research and Education

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

The interactome of infected neural cells reveals new therapeutic targets for Zika

23.01.2017 | Life Sciences

Melting solid below the freezing point

23.01.2017 | Materials Sciences

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

VideoLinks
B2B-VideoLinks
More VideoLinks >>>