Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Newly discovered cellular process helps cells respond to DNA damage


Biochemical mechanism may lead to new cancer prevention and treatment strategies

Scientists at St. Jude Children’s Research Hospital have discovered a novel biochemical process that plays a critical role in helping cells in the body respond to DNA damage, such as that caused by exposure to radiation, environmental toxins or free radicals.
The findings could lead to new approaches to prevent cancer, better ways to treat cancer and to the development of sensitive methods determining whether people have been exposed to radiation or environmental toxins, according to the researchers.

A report on this discovery, published in the current issue of the journal Nature, describes this critical early step in a cell’s response to DNA damage. This step, a chemical modification of an enzyme called ATM, allows the enzyme to initiate a series of events that ultimately halt the growth of a damaged cell and help the cell survive.

The finding is important because DNA damage caused by radiation and environmental toxins can lead to mutations or cell death, and can also contribute to the development of cancers.

Michael Kastan, M.D., Ph.D., chair of the Department of Hematology-Oncology at St. Jude and Christopher Bakkenist, Ph.D., also of St. Jude co-authored the research.

The St. Jude researchers found that ATM is activated by a signal from damaged DNA only seconds after the damage occurs. The activated ATM, in turn, activates other proteins by attaching a molecule called "phosphate" to them in a process called phosphorylation. This sets off a cascade of biochemical reactions that amplifies the initial ATM response.

Among the proteins phosphorylated by ATM are Brca1 and p53. It was already known that these proteins play important roles in preventing cancer, and that mutated forms of Brca1 and p53 are responsible for inherited cancers, such as familial breast cancer. The new St. Jude findings thus provide new insights into the way cells signal to both Brca1 and p53 following DNA damage.

The scientists are hopeful that they can use this information to improve therapy for many types of tumors.

"Because ATM is central to a cell’s response to irradiation, blocking its activation or activity might make virtually any type of tumor much more sensitive to radiation therapy," Kastan said. "The new molecular mechanisms identified here should allow us to achieve this aim by blocking ATM activity, which would make tumors more sensitive to radiation."

The St. Jude researchers also developed an antibody that specifically recognizes activated ATM, and thus identifies only those ATM molecules that are responding to DNA damage. "Our technique for identifying activated ATM is so sensitive that we’ve been able to show that it takes only a couple of breaks in the entire DNA of the cell to activate and initiate all of the cell’s response mechanisms," Kastan said.

The identification of these molecular mechanisms and the development of specific antibodies against activated ATM might also provide a very sensitive way to determine if cells in a person have been exposed to an agent or toxin that damages DNA, according to Kastan.

"Such an assay has many obvious potential uses," Kastan said, "including the assessment of exposure to dangerous agents in the environment." Another potential clinical benefit of these discoveries applies to cancer prevention. Since damage to the DNA appears to contribute to the vast majority of human cancers, enhancing the response of cells to DNA damage could reduce cancer development, Kastan noted. Therefore, the discovery of how ATM is activated could help guide the development of ways to improve cellular responses to DNA damage, including responses to oxidative stress that are either induced or natural.

"Based on the insights we’ve gained from our findings, we may be able to develop ways to activate ATM and thereby prevent or reduce the problems associated with DNA damage," Kastan said.

This work was supported by grants from the National Cancer Institute and National Institute of Environmental Health Sciences.

About St. Jude Children’s Research Hospital
St. Jude Children’s Research Hospital, in Memphis, Tennessee, was founded by the late entertainer Danny Thomas. The hospital is an internationally recognized biomedical research center dedicated to finding cures for childhood catastrophic diseases. The hospital’s work is supported through funds raised by the American Lebanese Syrian Associated Charities (ALSAC).

ALSAC covers all costs not covered by insurance for medical treatment rendered at St. Jude Children’s Research Hospital. Families without insurance are never asked to pay.

Bonnie Cameron | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht When fat cells change their colour
28.10.2016 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Aquaculture: Clear Water Thanks to Cork
28.10.2016 | Technologie Lizenz-Büro (TLB) der Baden-Württembergischen Hochschulen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>