Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Newly discovered cellular process helps cells respond to DNA damage

30.01.2003


Biochemical mechanism may lead to new cancer prevention and treatment strategies



Scientists at St. Jude Children’s Research Hospital have discovered a novel biochemical process that plays a critical role in helping cells in the body respond to DNA damage, such as that caused by exposure to radiation, environmental toxins or free radicals.
The findings could lead to new approaches to prevent cancer, better ways to treat cancer and to the development of sensitive methods determining whether people have been exposed to radiation or environmental toxins, according to the researchers.

A report on this discovery, published in the current issue of the journal Nature, describes this critical early step in a cell’s response to DNA damage. This step, a chemical modification of an enzyme called ATM, allows the enzyme to initiate a series of events that ultimately halt the growth of a damaged cell and help the cell survive.



The finding is important because DNA damage caused by radiation and environmental toxins can lead to mutations or cell death, and can also contribute to the development of cancers.

Michael Kastan, M.D., Ph.D., chair of the Department of Hematology-Oncology at St. Jude and Christopher Bakkenist, Ph.D., also of St. Jude co-authored the research.

The St. Jude researchers found that ATM is activated by a signal from damaged DNA only seconds after the damage occurs. The activated ATM, in turn, activates other proteins by attaching a molecule called "phosphate" to them in a process called phosphorylation. This sets off a cascade of biochemical reactions that amplifies the initial ATM response.

Among the proteins phosphorylated by ATM are Brca1 and p53. It was already known that these proteins play important roles in preventing cancer, and that mutated forms of Brca1 and p53 are responsible for inherited cancers, such as familial breast cancer. The new St. Jude findings thus provide new insights into the way cells signal to both Brca1 and p53 following DNA damage.

The scientists are hopeful that they can use this information to improve therapy for many types of tumors.

"Because ATM is central to a cell’s response to irradiation, blocking its activation or activity might make virtually any type of tumor much more sensitive to radiation therapy," Kastan said. "The new molecular mechanisms identified here should allow us to achieve this aim by blocking ATM activity, which would make tumors more sensitive to radiation."

The St. Jude researchers also developed an antibody that specifically recognizes activated ATM, and thus identifies only those ATM molecules that are responding to DNA damage. "Our technique for identifying activated ATM is so sensitive that we’ve been able to show that it takes only a couple of breaks in the entire DNA of the cell to activate and initiate all of the cell’s response mechanisms," Kastan said.

The identification of these molecular mechanisms and the development of specific antibodies against activated ATM might also provide a very sensitive way to determine if cells in a person have been exposed to an agent or toxin that damages DNA, according to Kastan.

"Such an assay has many obvious potential uses," Kastan said, "including the assessment of exposure to dangerous agents in the environment." Another potential clinical benefit of these discoveries applies to cancer prevention. Since damage to the DNA appears to contribute to the vast majority of human cancers, enhancing the response of cells to DNA damage could reduce cancer development, Kastan noted. Therefore, the discovery of how ATM is activated could help guide the development of ways to improve cellular responses to DNA damage, including responses to oxidative stress that are either induced or natural.

"Based on the insights we’ve gained from our findings, we may be able to develop ways to activate ATM and thereby prevent or reduce the problems associated with DNA damage," Kastan said.



This work was supported by grants from the National Cancer Institute and National Institute of Environmental Health Sciences.

About St. Jude Children’s Research Hospital
St. Jude Children’s Research Hospital, in Memphis, Tennessee, was founded by the late entertainer Danny Thomas. The hospital is an internationally recognized biomedical research center dedicated to finding cures for childhood catastrophic diseases. The hospital’s work is supported through funds raised by the American Lebanese Syrian Associated Charities (ALSAC).

ALSAC covers all costs not covered by insurance for medical treatment rendered at St. Jude Children’s Research Hospital. Families without insurance are never asked to pay.

Bonnie Cameron | EurekAlert!
Further information:
http://www.stjude.org/

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>