Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Methane bacteria possess pressure valve

24.10.2002


Microbiologists from the University of Nijmegen have discovered that a methane-forming archaeabacterium sometimes deliberately allows hydrogen ions to leak out of its cell. At high hydrogen concentrations in particular, the cell membrane works as a sort of pressure valve. The waste of energy seems to be of vital importance for the microorganism.



The researchers examined how a bacterium adapts to changing circumstances. The study focussed on the behaviour of the relatively simple methane producing microorganism Methanothermobacter thermoautotrophicus. In order to grow, this so-called archaeabacterium obtains hydrogen from the environment. However, the quantity of hydrogen, that is the food available, can vary considerably. The methane bacterium seems to use this to its advantage.

At high hydrogen concentrations, thus an excess of food, the bacterium grows as quickly as possible. In so doing the organism loses energy but at this point in time plenty of energy is available anyway. Furthermore, this wastage is a bonus as it results in the difference between the hydrogen ion concentrations inside and outside of the cell becoming smaller. Under these circumstances this is desirable, as otherwise a range of processes in the cell might cease to continue.


The observations confirm the prediction made in a mathematical model. That model, constructed by the Nijmegen research group, not only predicted that the methane bacteria would waste energy, but also how that would occur. At high hydrogen concentrations the microorganism would allow hydrogen ions to leak through the cell membrane. In this case the cell membrane would act as a sort of excess pressure valve.

The model summarises about 2000 different reactions in a small number of biochemical and thermodynamic equations. The researchers have now subjected the model and the assumptions on which it is based to extensive experimental testing. As had been assumed, the important reactions in the methane-forming process proceeded without energy loss.

Despite its relative simplicity, the model seems to accurately predict the behaviour of the microorganism. This implies that apparently complicated processes can in fact be determined by simple thermodynamic principles.

The researchers expect that this is not only the case for methane-forming bacteria but might also apply to other forms of life. This means that the research is not only interesting for microbiologists, but also for chemists, physicians, botanists and zoologists.



Michel Philippens | alfa

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>