Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Methane bacteria possess pressure valve

24.10.2002


Microbiologists from the University of Nijmegen have discovered that a methane-forming archaeabacterium sometimes deliberately allows hydrogen ions to leak out of its cell. At high hydrogen concentrations in particular, the cell membrane works as a sort of pressure valve. The waste of energy seems to be of vital importance for the microorganism.



The researchers examined how a bacterium adapts to changing circumstances. The study focussed on the behaviour of the relatively simple methane producing microorganism Methanothermobacter thermoautotrophicus. In order to grow, this so-called archaeabacterium obtains hydrogen from the environment. However, the quantity of hydrogen, that is the food available, can vary considerably. The methane bacterium seems to use this to its advantage.

At high hydrogen concentrations, thus an excess of food, the bacterium grows as quickly as possible. In so doing the organism loses energy but at this point in time plenty of energy is available anyway. Furthermore, this wastage is a bonus as it results in the difference between the hydrogen ion concentrations inside and outside of the cell becoming smaller. Under these circumstances this is desirable, as otherwise a range of processes in the cell might cease to continue.


The observations confirm the prediction made in a mathematical model. That model, constructed by the Nijmegen research group, not only predicted that the methane bacteria would waste energy, but also how that would occur. At high hydrogen concentrations the microorganism would allow hydrogen ions to leak through the cell membrane. In this case the cell membrane would act as a sort of excess pressure valve.

The model summarises about 2000 different reactions in a small number of biochemical and thermodynamic equations. The researchers have now subjected the model and the assumptions on which it is based to extensive experimental testing. As had been assumed, the important reactions in the methane-forming process proceeded without energy loss.

Despite its relative simplicity, the model seems to accurately predict the behaviour of the microorganism. This implies that apparently complicated processes can in fact be determined by simple thermodynamic principles.

The researchers expect that this is not only the case for methane-forming bacteria but might also apply to other forms of life. This means that the research is not only interesting for microbiologists, but also for chemists, physicians, botanists and zoologists.



Michel Philippens | alfa

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>