Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Methane bacteria possess pressure valve

24.10.2002


Microbiologists from the University of Nijmegen have discovered that a methane-forming archaeabacterium sometimes deliberately allows hydrogen ions to leak out of its cell. At high hydrogen concentrations in particular, the cell membrane works as a sort of pressure valve. The waste of energy seems to be of vital importance for the microorganism.



The researchers examined how a bacterium adapts to changing circumstances. The study focussed on the behaviour of the relatively simple methane producing microorganism Methanothermobacter thermoautotrophicus. In order to grow, this so-called archaeabacterium obtains hydrogen from the environment. However, the quantity of hydrogen, that is the food available, can vary considerably. The methane bacterium seems to use this to its advantage.

At high hydrogen concentrations, thus an excess of food, the bacterium grows as quickly as possible. In so doing the organism loses energy but at this point in time plenty of energy is available anyway. Furthermore, this wastage is a bonus as it results in the difference between the hydrogen ion concentrations inside and outside of the cell becoming smaller. Under these circumstances this is desirable, as otherwise a range of processes in the cell might cease to continue.


The observations confirm the prediction made in a mathematical model. That model, constructed by the Nijmegen research group, not only predicted that the methane bacteria would waste energy, but also how that would occur. At high hydrogen concentrations the microorganism would allow hydrogen ions to leak through the cell membrane. In this case the cell membrane would act as a sort of excess pressure valve.

The model summarises about 2000 different reactions in a small number of biochemical and thermodynamic equations. The researchers have now subjected the model and the assumptions on which it is based to extensive experimental testing. As had been assumed, the important reactions in the methane-forming process proceeded without energy loss.

Despite its relative simplicity, the model seems to accurately predict the behaviour of the microorganism. This implies that apparently complicated processes can in fact be determined by simple thermodynamic principles.

The researchers expect that this is not only the case for methane-forming bacteria but might also apply to other forms of life. This means that the research is not only interesting for microbiologists, but also for chemists, physicians, botanists and zoologists.



Michel Philippens | alfa

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>