Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rice bioengineers develop method to grow 3-D bone matrix

04.10.2002


Researchers use flowing fluids to create mechanical stress needed for bone formation


Tissue engineering researchers in Rice’s J.W. Cox Laboratory for Biomedical Engineering have developed a new technique that allows bone-forming cells to build a porous, 3-D bony matrix that’s structurally similar to natural bone. This photograph from an electron microscope shows a pore that has formed in a 3-D bony matrix. Bone-forming cells are clearly visible lining the walls.



A new study by Rice University researchers indicates that bioengineers growing bone in the laboratory may be able to create the mechanical stimulation needed to grow bone outside the body.

One of the greatest challenges tissue engineers face in growing bone in the laboratory is recreating the conditions that occur inside the body. The recipe for growing healthy bones includes not only a precise biological mix -- bone cells called "osteoblasts" and several growth factors that osteoblasts use to build the mineralized matrix of bones -- but also mechanical stimulation. Astronauts whose bones become brittle after months in orbit are a testament to the importance that mechanical stress plays in bone growth. In orbit, their skeletons aren’t subject to the everyday stresses of gravity.


Tissue engineers at Rice placed bone marrow-derived osteoblasts from rats into centimeter-wide plexiglass chambers containing a thin stack of titanium fiber mesh. The samples were covered with a liquid growth medium -- a bath of chemicals that promotes bone growth -- and sealed in an incubator. After letting the cultures sit overnight -- to give the cells time to attach themselves to the mesh -- engineers pumped growth medium through the cultures for 16 days. Bone cultures were subjected to a range of three different flow rates to provide mechanical stimulation, and another set of cultures were grown in a motionless bath.

Results of the research appear in the current issue of the Proceedings of the National Academy of Sciences USA.

"Researchers have used fluid flow to stimulate bone growth before, but no one has looked at its effect on three-dimensional cultures that have been subjected to continuous stimulation for several days," said Tony Mikos, the John W. Cox Professor of Bioengineering. "We found that even the lowest flow rate produced a significant increase in the formation of mineralized bone. Moreover, the mineralized bone that formed in samples subjected to flow was thick and well-developed -- similar to what we find in natural bone --while the bone matrix formed by the static samples was thin and brittle."

Mikos said more studies are needed to determine the exact flow rate needed to produce the optimal amount of bone matrix with the optimal three-dimensional structure. For those who have lost a segment of bone to cancer or injury, the technology isn’t expected to result in clinical treatment options for several years. Ultimately, however, artificial bone could be substituted for donor tissue or surgical implants made of synthetic materials.



The research was sponsored by the National Institutes of Health and NASA.

The article, titled "Fluid Flow Increases Mineralized Matrix Deposition in 3D Perfusion Culture of Marrow Stromal Osteoblasts in a Dose-Dependent Manner," by G.N. Bancroft, V.I. Sikavitsas, J. van den Dolder, T.L. Sheffield, C.G. Ambrose, J.A. Jansen, and A.G. Mikos, appears in the Oct. 1 issue of Proceedings of the National Academy of Sciences

Jade Boyd | EurekAlert!
Further information:
http://chico.rice.edu/

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>