Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rice bioengineers develop method to grow 3-D bone matrix

04.10.2002


Researchers use flowing fluids to create mechanical stress needed for bone formation


Tissue engineering researchers in Rice’s J.W. Cox Laboratory for Biomedical Engineering have developed a new technique that allows bone-forming cells to build a porous, 3-D bony matrix that’s structurally similar to natural bone. This photograph from an electron microscope shows a pore that has formed in a 3-D bony matrix. Bone-forming cells are clearly visible lining the walls.



A new study by Rice University researchers indicates that bioengineers growing bone in the laboratory may be able to create the mechanical stimulation needed to grow bone outside the body.

One of the greatest challenges tissue engineers face in growing bone in the laboratory is recreating the conditions that occur inside the body. The recipe for growing healthy bones includes not only a precise biological mix -- bone cells called "osteoblasts" and several growth factors that osteoblasts use to build the mineralized matrix of bones -- but also mechanical stimulation. Astronauts whose bones become brittle after months in orbit are a testament to the importance that mechanical stress plays in bone growth. In orbit, their skeletons aren’t subject to the everyday stresses of gravity.


Tissue engineers at Rice placed bone marrow-derived osteoblasts from rats into centimeter-wide plexiglass chambers containing a thin stack of titanium fiber mesh. The samples were covered with a liquid growth medium -- a bath of chemicals that promotes bone growth -- and sealed in an incubator. After letting the cultures sit overnight -- to give the cells time to attach themselves to the mesh -- engineers pumped growth medium through the cultures for 16 days. Bone cultures were subjected to a range of three different flow rates to provide mechanical stimulation, and another set of cultures were grown in a motionless bath.

Results of the research appear in the current issue of the Proceedings of the National Academy of Sciences USA.

"Researchers have used fluid flow to stimulate bone growth before, but no one has looked at its effect on three-dimensional cultures that have been subjected to continuous stimulation for several days," said Tony Mikos, the John W. Cox Professor of Bioengineering. "We found that even the lowest flow rate produced a significant increase in the formation of mineralized bone. Moreover, the mineralized bone that formed in samples subjected to flow was thick and well-developed -- similar to what we find in natural bone --while the bone matrix formed by the static samples was thin and brittle."

Mikos said more studies are needed to determine the exact flow rate needed to produce the optimal amount of bone matrix with the optimal three-dimensional structure. For those who have lost a segment of bone to cancer or injury, the technology isn’t expected to result in clinical treatment options for several years. Ultimately, however, artificial bone could be substituted for donor tissue or surgical implants made of synthetic materials.



The research was sponsored by the National Institutes of Health and NASA.

The article, titled "Fluid Flow Increases Mineralized Matrix Deposition in 3D Perfusion Culture of Marrow Stromal Osteoblasts in a Dose-Dependent Manner," by G.N. Bancroft, V.I. Sikavitsas, J. van den Dolder, T.L. Sheffield, C.G. Ambrose, J.A. Jansen, and A.G. Mikos, appears in the Oct. 1 issue of Proceedings of the National Academy of Sciences

Jade Boyd | EurekAlert!
Further information:
http://chico.rice.edu/

More articles from Life Sciences:

nachricht Repairing damaged hearts with self-healing heart cells
22.08.2017 | National University Health System

nachricht Biochemical 'fingerprints' reveal diabetes progression
22.08.2017 | Umea University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Cholesterol-lowering drugs may fight infectious disease

22.08.2017 | Health and Medicine

Meter-sized single-crystal graphene growth becomes possible

22.08.2017 | Materials Sciences

Repairing damaged hearts with self-healing heart cells

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>