Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stretchy spider silks can be springs or rubber

02.06.2008
What makes spider silk stretchy?

It’s stronger than steel and nylon, and more extensible than Kevlar. So what is this super-tough material? Spider silk; and learning how to spin it is one of the materials industries’ Holy Grails. John Gosline has been fascinated by spider silks and their remarkable toughness for most of his scientific career.

He explains that if we’re to learn how to manufacture spider silk, we have to understand the relationship between the components and the spun fibre’s mechanical properties; which is why he is focusing on major ampullate silk, one of the many silks that spiders spin.

According to Gosline, spiders use major ampullate silk for draglines and to build the frame and radial structures in webs, all of which have to deform and absorb enormous amounts of energy without fracturing. Comparing the amino acid sequences of major ampullate silk proteins from Araneus diadematus and Nephila clavipes, Gosline realised that the sequences differed on one count; Araneus silk is relatively rich in the amino acid proline, while proline levels in Nephila silk are very low.

Curious to know how the presence of proline affects the silks, Gosline and his student, Ken Savage, set about comparing the silks’ mechanical properties to find out how the amino acid affects spider silk toughness.

However, obtaining consistent spider silk samples is a problem. Gosline explains that spiders adjust the way they manufacture their silks depending on their circumstances, so he and Savage left the spiders roaming free so that the strands of dragline silk that they dropped were as uniform as possible. Having established a reliable silk supply, Savage set about testing the silks’ mechanical properties. Gently stretching the dry silk while measuring the force on it, the team quickly realised that the silks behaved almost identically; the presence of proline had little or no effect on dry silk. However, when Savage began investigating the hydrated silk it was a completely different story.

For a start, the wet Araneus silk shrank and swelled much more than the proline deficient Nephila silk. Savage also tested the silk’s stiffness, and found that the Nephila silk was almost ten times stiffer than the Araneus silk. Finally, knowing that regions of the silk proteins stack to form microscopic crystals in a fibre, Savage measured the fibre’s birefringence to see how the two silks compared and if the organisation of the proteins in the silk fibre changed when they were damp. The proteins in the Nephila silk were always more organised than the proteins in the Araneus silk, regardless of whether they were wet or dry. And as Savage stretched the silks, the degree of organisation in the hydrated Nephila silk increased much more than the Araneus silk.

Gosline realised that the different mechanical properties could be accounted for by the silk proteins’ amino acid composition. According to Gosline, proline amino acids are famed for breaking up the organised three-dimensional structures that protein chains fold into, so protein structures with high proline content would be poorly organised in comparison to proteins with little or no proline. Araneus silk contains 16% proline, found mostly in linker regions between the protein’s crystalline structures, which would make the linkers flexible and randomly arranged. Gosline realised that if this was the case, the hydrated silk might behave like an elastic band. Nephila silk, on the other hand, has a very low proline content in the linker regions, allowing the linkers to form a relatively well organised crystalline structure and behave more like a stiff spring. Gosline and Savage decided to investigate both silks’ stretchiness to see if they were more rubber-like or spring-like.

Stretching samples of the hydrated silks, Savage gently raised and lowered the temperature from 30 to 10°C while carefully measuring the minute forces required to maintain the extension. For Nephila silk the force remained essentially constant as the temperature changed, a clear indication of spring-like elasticity. However, for the proline-rich Araneus silk the force varied in direct proportion to the temperature, behaving like a rubber-band. So proline-rich spider silks extend like floppy rubber bands, while spider silks with low proline levels behave more like rigid springs.

Having found that proline amino acids have a dramatic effect on the mechanical behaviour of hydrated spider silks, Gosline and Savage are keen to find out why the behaviour of the dry silks is almost indistinguishable and what the functional significance is of the different proline contents.

John Gosline | EurekAlert!
Further information:
http://www.zoology.ubc.ca

Further reports about: Araneus Gosline Nephila Protein Savage acid amino hydrated proline properties realised

More articles from Life Sciences:

nachricht Kidney tumor: Genetic trigger discovered
18.06.2018 | Julius-Maximilians-Universität Würzburg

nachricht New type of photosynthesis discovered
18.06.2018 | Imperial College London

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

Im Focus: Water is not the same as water

Water molecules exist in two different forms with almost identical physical properties. For the first time, researchers have succeeded in separating the two forms to show that they can exhibit different chemical reactivities. These results were reported by researchers from the University of Basel and their colleagues in Hamburg in the scientific journal Nature Communications.

From a chemical perspective, water is a molecule in which a single oxygen atom is linked to two hydrogen atoms. It is less well known that water exists in two...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Novel method for investigating pore geometry in rocks

18.06.2018 | Earth Sciences

Diamond watch components

18.06.2018 | Process Engineering

New type of photosynthesis discovered

18.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>