Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Body weight influenced by thousands of genes

17.01.2008
Obesity quick fix unlikely; problem even more complex than previously thought

Reporting in the online journal BMC Genetics, researchers from the Monell Center have for the first time attempted to count the number of genes that contribute to obesity and body weight.

The findings suggest that over 6,000 genes – about 25 percent of the genome – help determine an individual’s body weight.

“Reports describing the discovery of a new ‘obesity gene’ have become common in the scientific literature and also the popular press,” notes Monell behavioral geneticist Michael G. Tordoff, PhD, an author on the study.

... more about:
»Contribute »knockout

“Our results suggest that each newly discovered gene is just one of the many thousands that influence body weight, so a quick fix to the obesity problem is unlikely.”

To obtain an estimate of how many genes contribute to body weight, the Monell researchers surveyed the Jackson Laboratory Mouse Genome Database for information on body weights of knockout mouse strains.

Knockout mice have had a specific gene inactivated, or "knocked out.” By studying how the knockout mice differ from normal mice, researchers obtain information about that gene’s function and how it might contribute to disease. Mice can provide valuable information on human disease because they share many genes with humans.

The knockout approach is so useful that the inventors of the technology were awarded the 2007 Nobel Prize in Medicine. Knockout mice are now standard tools in all mouse models of behavior and disease.

In 60% of strains, knocking out a gene produces mice that are nonviable; that is, the mouse cannot survive without the knocked out gene.

The Monell survey revealed that body weight was altered in over a third of the viable knockout stains; 31 percent weighed less than controls (indicating that the missing genes contribute to heavier body weight), while another 3 percent weighed more (contributing to lighter weight).

Extrapolating from the total number of genes in the mouse genome, this implies that over 6,000 genes could potentially contribute to the body weight of a mouse.

Tordoff comments, “It is interesting that there are 10 times more genes that increase body weight than decrease it, which might help explain why it is easier to gain weight than lose it.”

Because body weight plays a role in many diseases, including hypertension, diabetes, and heart disease, the implications of the findings extend beyond studies of obesity and body weight. Gene knockouts reported to affect these diseases and others could potentially be due to a general effect to lower body weight.

The findings also hold clinical relevance, according to lead author Danielle R. Reed, PhD, a Monell geneticist. "Clinicians and other professionals concerned with the development of personalized medicine need to expand their ideas of genetics to recognize that many genes act together to determine disease susceptibility."

Leslie Stein | EurekAlert!
Further information:
http://www.monell.org

Further reports about: Contribute knockout

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>