Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Replacing oil with wood for the production of chemicals


Two research projects of the National Research Programme “Resource Wood” have developed new processes to replace petroleum with wood for the production of important chemicals. These precursors are used in the manufacture of pharmaceuticals, plastics or fertilisers.

Petroleum means fuel, but not only: petrochemicals are a core ingredient of the chemical industry. Without oil, there would be no plastics and few pharmaceuticals or fertilisers. Finding a renewable resource as an alternative to oil will be crucial to face the foreseeable decline in oil extraction.

Two research projects of the National Research Programme “Resource Wood” (NRP 66) have made significant advances towards replacing oil with biomass derived from plants, in particular from wood. Their goals are complementary, as each one uses one of the two main constituents of wood: cellulose and lignin. These are the two most common organic components on Earth and, importantly, are renewable.

Sviatlana Siankevich of EPFL has designed new catalytic processes to efficiently transform cellulose into hydroxymethylfurfural (HMF), a very important precursor for the production of plastics, fertilisers or biofuels.(*) Inspired by the action of fungi degrading rotting wood, the team of Philippe Corvini at FHNW in Muttenz (BL) has selected enzymes capable of cutting lignin into aromatic compounds useful for making solvents, pesticides, plastics such as polystyrenes as well as active pharmaceutical ingredients.

Chemicals instead of paper

Cellulose is a long chain of carbohydrate (sugar) molecules and accounts for about two-thirds of wood’s weight. “It is mainly used for paper production, and the residuals could be better valorised by being transformed into useful chemicals,” says Sviatlana Siankevich of EPFL’s Institute of Chemical Sciences and Engineering.

With colleagues from Queen’s University in Canada and the National University of Singapore, the EPFL team led by chemist Paul Dyson synthesised several types of ionic liquids (molten salts) to convert cellulose into HMF, an important molecule for the production of commodity chemicals. In a single step, their reaction reached a 62% yield, a new record.

“Our procedure operates at mild conditions, that is, without very high temperatures or pressure or strong acids”, says Siankevich. “We’ve also been able to reduce the amount of undesired by-products, an important point if the reaction is to be scaled up for industrial processes. Our process can work with wood, but it’s often easier to use cellulose extracted from herbaceous plants.”

Greener chemistry

At the Fachhochschule Nordwestschweiz (FHNW) in Muttenz, Philippe Corvini and his PhD student Christoph Gasser are developing ways to use lignin, a long molecule which gives trees their rigidity and makes up around 15%-40% of the wood content. “Until now, lignin was not very much valorised, but often simply burned,” says Corvini. “But it can be cut into aromatic structures, molecules based on the famous carbon hexagon ubiquitous in organic chemistry. These components represent huge volumes for the chemical industry, and have been so far almost exclusively obtained from petroleum. Lignin is presently the most serious alternative.”

Some fungi secrete a combination of enzymes to degrade lignin and chop it into smaller pieces. Corvini’s team at FHNW screened the combinations of dozens of such enzymes to select the most efficient.(**) By adding a further catalytic step, they managed to transform 40% of the lignin into very small molecules such as vanillin. The process is of interest to the chemical industry, and collaboration with a lignin producer is already underway. “Most of the lignin today is obtained from wheat or rice straw,” says Corvini. “But soft wood such as spruce could prove useful as its lignin is easy to break down.”

The FHNW team also developed a way to reuse the enzymes. “We have attached them onto iron nanoparticles coated with silica, explains the researcher. After the reaction, we simply approach with a magnet to attract the particles and recover the enzymes.” As these can be reused up to ten times, the energy and resources needed to produce them is significantly reduced and fits well into the concept of “green chemistry”.

All of the wood

To be economically viable, wood as a replacement for petrochemicals must be used to the greatest extent possible. “Extracting only one component from wood in small quantity is not enough,” says Sviatlana Siankevich. “We need to find complementary processes to use all of it.” But more aspects must be considered to assess whether wood can serve as an economically viable substitute for oil. A third project of NRP 66 has recently carried out a sustainability assessment of the production of succinic acid, another important chemical, from wood residues.(***) The study from ETH Zurich and EPFL shows that smart process design can lead to energy savings and environmental benefits, key factors for biorefineries to be competitive.

(*) S. Siankevich et al.: Direct conversion of mono- and polysaccharides into 5-hydroxymethylfurfural using ionic liquid mixtures. ChemSusChem (2016); doi: 10.1002/cssc.201600313

(**) C. Gasser and P. Corvini (submitted)

(***) M. Morales et al.: Sustainability Assessment of Succinic Acid Production Technologies from Biomass using Metabolic Engineering. Energy & Environmental Science (2016); doi: 10.1039/C6EE00634E

(The first publication is available to the media upon request:


Sviatlana Siankevich
Institute of Chemical Sciences and Engineering
1018 Lausanne
Tel.: +41 21 693 98 61

Philippe Corvini
Institute for Ecopreneurship
4132 Muttenz
Tel.: +41 61 467 43 44

Resource Wood (NRP 66)

In collaboration with industry, forest owners and authorities, the National Research Programme “Resource Wood” (NRP 66) aims to generate scientific insights and practical solutions to optimise the exploitation and use of wood in Switzerland. The overall final recommendations of NRP 66 will be published in summary reports in 2017. The Swiss National Science Foundation was commissioned (SNSF) by the Federal Council to run the programme.

Weitere Informationen: - Press release and related links

Media - Abteilung Kommunikation | idw - Informationsdienst Wissenschaft

Further reports about: Chemical Sciences EPFL Replacing SNF aromatic chemical industry chemicals enzymes ionic

More articles from Life Sciences:

nachricht Signaling Pathways to the Nucleus
19.03.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht In monogamous species, a compatible partner is more important than an ornamented one
19.03.2018 | Max-Planck-Institut für Ornithologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

TIB’s Visual Analytics Research Group to develop methods for person detection and visualisation

19.03.2018 | Information Technology

Tiny implants for cells are functional in vivo

19.03.2018 | Interdisciplinary Research

Science & Research
Overview of more VideoLinks >>>