Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Repairing the brain

21.09.2015

Two genes unlock potential for treatment of schizophrenia

Research led by scientists from Duke-NUS Graduate Medical School Singapore (Duke-NUS) has linked the abnormal behaviour of two genes (BDNF and DTNBP1) to the underlying cause of schizophrenia. These findings have provided a new target for schizophrenia treatment.


This is an image of a cultured neuron with an added BDNF protein.

Credit: Duke-NUS Graduate Medical School Singapore

Schizophrenia is a devastating mental disorder that affects nearly 1% of the total human population. The dominant cause of the disorder lies in impaired brain development that eventually leads to imbalanced signals within the brain. This imbalance within the brain is thought to cause hallucinations and paranoia in people with schizophrenia.

"We wanted to understand the mechanism by which the brain circuit operates," explained senior author Assistant Professor Shawn Je, from the Neuroscience and Behavioural Disorders Programme at Duke-NUS. "In particular, we wanted to understand the ability of a specific type of cell in the brain, termed interneurons, to modulate brain network activity to maintain a balance in brain signalling."

Dr. Je and his team analysed signalling activity in neuronal cultures that either did not have the DTNBP1 gene or had lowered levels of the gene, because reduced DTNBP1 levels and genetic disruptions of DTNBP1 in mice resulted in schizophrenia-like behaviours. Using multiple model systems, they found that the low levels of DTNBP1 resulted in dysfunctional interneurons and over-activated neuronal network activity. Reducing levels of DTNBP1 also lowered the levels of the secreted protein molecule, BDNF.

BDNF was then shown to be one of the most important factors that regulate the development of a normal brain circuit. It plays an important role in the interneurons ability to connect to the brain. Interneurons receive BDNF via a transport system run by DTNBP1. This can be likened to the delivery of a parcel: DTNBP1 is the driver of the delivery van and without the driver, the parcel BDNF cannot be delivered to the required destination. Without BDNF, the abnormal circuit development and brain network activity observed in schizophrenia patients results.

Additionally, Dr. Je and his team also found that when BDNF levels were restored, brain development and activity were rescued and returned to more normal levels, despite the absence of DTNBP1.

While the two genes DTNBP1 and BDNF have been singled out as risk genes for schizophrenia in studies before, this is the first study to show that the two function together. Pinpointing the importance of the abnormal delivery of BDNF has shed considerable insight into how the brain network develops. It also presents possibilities for potential treatments for schizophrenia designed around enhancing BDNF levels.

In a follow-up study, Dr. Je plans to test if these findings are viable in an animal model. If proven successful, this could mean that correcting the imbalance within the brain circuits of schizophrenia patients may bring us closer to producing a treatment.

###

Study facts at a glance:

  • The study was published online in the journal Biological Psychiatry.
  • DTNBP1 and BDNF are two genes that increase the risk of schizophrenia.
  • Dr. Je's study is the first ever to show that DTNBP1 is required for proper trafficking of BDNF to its appropriate location within the brain circuit.
  • BDNF is required for the development and action of interneurons within the brain circuit that maintains signalling balance.
  • Results have shown that regulating BDNF levels can rescue the signalling imbalance observed in schizophrenia, providing new hope for a treatment.

 

Media Contact

Dharshini Subbiah
dharshini.subbiah@duke-nus.edu.sg
65-961-67532

 @dukenus

http://www.duke-nus.edu.sg 

Dharshini Subbiah | EurekAlert!

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>