Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Reliable culture of human embryonic stem cells

26.11.2010
Human embryonic stem cells have enormous potential for use in pharmaceutical development and therapeutics; however, to realize this potential there is a requirement for simple and reproducible cell culture methods that provide adequate numbers of cells of suitable quality.

A team of researchers at the University of Glasgow and Heriot-Watt University, Edinburgh, have discovered a new way of blocking the spontaneous differentiation of stem cells by using the compound erythro-9-(2-hydroxy-3-nonyl)adenine (EHNA).

As explained by Peter Burton and colleagues in their paper published in the ChemBio Knowledge Environment of the Biochemical Journal, this means that human embryonic stem cells can be maintained in an undifferentiated state whilst remaining capable of differentiating to all cell types in the body, thus realizing their huge potential as research tools and for cell therapies.

Importantly, the EHNA treatment did not ‘lock’ the stem cells in an undifferentiated state, as the EHNA was removed, the cells were capable of multi-lineage differentiation.

The researchers note that EHNA is a robust, stable compound, readily prepared from commercially available starting materials at low cost in just two synthetic steps.

Bart Vanhaesebroeck, Deputy Chair for the BJ ChemBio Knowledge Environment, said: said “These findings have immense potential implications for bringing stem cell therapies closer to the clinic.”

Full bibliographic information
Peter Burton, David R. Adams, Achamma Abraham, Robert W. Allcock, Zhong Jiang, Angela McCahill, Jane Gilmour, John McAbney, Alexandra Kaupisch, Nicole M. Kane, George S. Baillie, Andrew H. Baker, Graeme Milligan, Miles D. Houslay and Joanne C. Mountford (2010) Erythro-9-(2-hydroxy-3-nonyl)adenine (EHNA) blocks differentiation and maintains the expression of pluripotency markers in human embryonic stem cells Biochem. J. 432 (575–584)

Mark Burgess | alfa
Further information:
http://www.biochemj.org/bj/432/bj4320575.htm

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>