Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Relative perception of the world

04.12.2015

Optical illusions show how the fly brain processes contrast and motion information

If the price of a product is reduced, willingness to buy increases – the product appears cheaper even though it is perhaps still too expensive. Our perception of the world is therefore often relative: we compare what we see with a reference point – in this case with the price before the discount. The same applies to the perception of luminance stimuli. An object appears brighter if the background is dark, and darker if the background is bright. Optical illusions help to analyze the perception of such relative contrast signals. What happens, however, at cellular level in the brain is largely unknown. Scientists at the Max Planck Institute of Neurobiology in Martinsried have now used behavioural experiments on the fruit fly Drosophila to show that spatial contrast information and motion stimuli are processed in different neural circuits.


The bar in this contrast illusion is uniformly grey, even if the right side of the bar appears darker than the left. If the luminance of the grey bar now changes, both humans and flies see a motion illusion.

© MPI of Neurobiology


Using sophisticated behavioural testing apparatus, neurobiologists are decoding the fruit fly's perception and the underlying neural circuits.

© MPI of Neurobiology

Optical illusions lead the observer to believe that they see something which actually isn't there. But this is not due to any problem with our eyesight. Instead, the specific conditions of the illusion show how the brain analyzes our environment. Several effects are based on relative perception: an object seems smaller if it is placed in the vicinity of large objects, or larger, if it is surrounded by smaller objects. Other illusions are based on spatial contrast. A uniformly grey bar in front of a background with a luminance gradient appears as if one side of the bar is darker than the other. Motion illusions, in contrast, simulate movement where there is none. If the previously mentioned grey bar brightens and darkens dynamically against the background gradient, for example, this gives the impression of movement. This illusion is known as a contrast motion illusion.

To understand how the brain processes the optical information, Alexander Borst and his Department at the Max Planck Institute of Neurobiology are studying a master of motion vision: the fly. Based on previous findings relating to the fly's motion vision, the animals are not supposed to respond to motion illusions like the contrast motion illusion. “Naturally, we wanted to know more about this”, says Armin Bahl, lead author of the study published in the scientific journal Neuron. The scientists used a sophisticated behavioural testing apparatus for their investigations: tethered to a small hook, the fly walks on an air-suspended polystyrene ball surrounded by a virtual environment. The movement of the ball indicates the direction in which the fly is walking. This in turn allows conclusions to be drawn about the animal's perception. When the scientists tested the contrast motion illusion in this experimental setup, they were surprised: flies responded very robustly to the illusions and perceived a supposed movement in the same direction, just as the human observers did.

Division of labour in the fly brain

To examine the new findings in greater detail, the researchers used genetic silencing to switch off the cells in the fly brain that are responsible for motion vision. Such flies are completely motion-blind, as a behavioural experiment proves: if a fly is surrounded by a rotating striped cylinder, wild-type flies will rotate concurrently with the movement – to the right if the cylinder turns to the right and to the left if the rotation is in a leftward direction. This innate behaviour exhibited by flies and many other animals is known as the optomotor response. It helps animals, and us humans as well, to stabilize our course and to fly or walk in a straight line. Motion-blind flies, in contrast, display no optomotor response.

When the scientists showed the contrast motion illusion to motion-blind flies, however, they did not find any difference compared to the behaviour of normal flies. “That was a really surprising result”, recalls Armin Bahl. The scientists concluded from this that spatial contrast and motion are computed and processed in different areas of the brain. “All the evidence suggests that the fly brain analyzes what it sees via a variety of neural channels: one channel for motion, another for spatial contrast and very probably additional channels for other features of the visual environment”, summarizes Armin Bahl. In response to the question of whether this is also the case for humans, Alexander Borst's answer is: "Very likely! The human visual system is also highly modular.” This work on contrast vision in flies thus helps us to understand how the brain perceives and processes the various stimuli in its environment.


Contact

Dr. Stefanie Merker
Max Planck Institute of Neurobiology, Martinsried
Phone: +49 89 8578-3514

Email: merker@neuro.mpg.de


Prof. Dr. Alexander Borst
Max Planck Institute of Neurobiology, Martinsried
Phone: +49 89 8578-3251

Fax: +49 89 8578-3252

Email: borst@neuro.mpg.de


Original publication
Armin Bahl, Etienne Serbe, Matthias Meier, Georg Ammer and Alexander Borst

Neural mechanisms for Drosophila contrast vision
Neuron, 3 December 2015

Dr. Stefanie Merker | Max Planck Institute of Neurobiology, Martinsried
Further information:
https://www.mpg.de/9766118/drosophila-contrast-vision

Further reports about: Drosophila Max Planck Institute Neurobiology Neuron Optical animals cylinder fly fly brain movement spatial

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>