Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Relative perception of the world


Optical illusions show how the fly brain processes contrast and motion information

If the price of a product is reduced, willingness to buy increases – the product appears cheaper even though it is perhaps still too expensive. Our perception of the world is therefore often relative: we compare what we see with a reference point – in this case with the price before the discount. The same applies to the perception of luminance stimuli. An object appears brighter if the background is dark, and darker if the background is bright. Optical illusions help to analyze the perception of such relative contrast signals. What happens, however, at cellular level in the brain is largely unknown. Scientists at the Max Planck Institute of Neurobiology in Martinsried have now used behavioural experiments on the fruit fly Drosophila to show that spatial contrast information and motion stimuli are processed in different neural circuits.

The bar in this contrast illusion is uniformly grey, even if the right side of the bar appears darker than the left. If the luminance of the grey bar now changes, both humans and flies see a motion illusion.

© MPI of Neurobiology

Using sophisticated behavioural testing apparatus, neurobiologists are decoding the fruit fly's perception and the underlying neural circuits.

© MPI of Neurobiology

Optical illusions lead the observer to believe that they see something which actually isn't there. But this is not due to any problem with our eyesight. Instead, the specific conditions of the illusion show how the brain analyzes our environment. Several effects are based on relative perception: an object seems smaller if it is placed in the vicinity of large objects, or larger, if it is surrounded by smaller objects. Other illusions are based on spatial contrast. A uniformly grey bar in front of a background with a luminance gradient appears as if one side of the bar is darker than the other. Motion illusions, in contrast, simulate movement where there is none. If the previously mentioned grey bar brightens and darkens dynamically against the background gradient, for example, this gives the impression of movement. This illusion is known as a contrast motion illusion.

To understand how the brain processes the optical information, Alexander Borst and his Department at the Max Planck Institute of Neurobiology are studying a master of motion vision: the fly. Based on previous findings relating to the fly's motion vision, the animals are not supposed to respond to motion illusions like the contrast motion illusion. “Naturally, we wanted to know more about this”, says Armin Bahl, lead author of the study published in the scientific journal Neuron. The scientists used a sophisticated behavioural testing apparatus for their investigations: tethered to a small hook, the fly walks on an air-suspended polystyrene ball surrounded by a virtual environment. The movement of the ball indicates the direction in which the fly is walking. This in turn allows conclusions to be drawn about the animal's perception. When the scientists tested the contrast motion illusion in this experimental setup, they were surprised: flies responded very robustly to the illusions and perceived a supposed movement in the same direction, just as the human observers did.

Division of labour in the fly brain

To examine the new findings in greater detail, the researchers used genetic silencing to switch off the cells in the fly brain that are responsible for motion vision. Such flies are completely motion-blind, as a behavioural experiment proves: if a fly is surrounded by a rotating striped cylinder, wild-type flies will rotate concurrently with the movement – to the right if the cylinder turns to the right and to the left if the rotation is in a leftward direction. This innate behaviour exhibited by flies and many other animals is known as the optomotor response. It helps animals, and us humans as well, to stabilize our course and to fly or walk in a straight line. Motion-blind flies, in contrast, display no optomotor response.

When the scientists showed the contrast motion illusion to motion-blind flies, however, they did not find any difference compared to the behaviour of normal flies. “That was a really surprising result”, recalls Armin Bahl. The scientists concluded from this that spatial contrast and motion are computed and processed in different areas of the brain. “All the evidence suggests that the fly brain analyzes what it sees via a variety of neural channels: one channel for motion, another for spatial contrast and very probably additional channels for other features of the visual environment”, summarizes Armin Bahl. In response to the question of whether this is also the case for humans, Alexander Borst's answer is: "Very likely! The human visual system is also highly modular.” This work on contrast vision in flies thus helps us to understand how the brain perceives and processes the various stimuli in its environment.


Dr. Stefanie Merker
Max Planck Institute of Neurobiology, Martinsried
Phone: +49 89 8578-3514


Prof. Dr. Alexander Borst
Max Planck Institute of Neurobiology, Martinsried
Phone: +49 89 8578-3251

Fax: +49 89 8578-3252


Original publication
Armin Bahl, Etienne Serbe, Matthias Meier, Georg Ammer and Alexander Borst

Neural mechanisms for Drosophila contrast vision
Neuron, 3 December 2015

Dr. Stefanie Merker | Max Planck Institute of Neurobiology, Martinsried
Further information:

Further reports about: Drosophila Max Planck Institute Neurobiology Neuron Optical animals cylinder fly fly brain movement spatial

More articles from Life Sciences:

nachricht Don't Give the Slightest Chance to Toxic Elements in Medicinal Products
23.03.2018 | Physikalisch-Technische Bundesanstalt (PTB)

nachricht North and South Cooperation to Combat Tuberculosis
22.03.2018 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>