Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Reducing the sweetness to survive

23.10.2015

Manduca sexta caterpillars' developed a surprising detoxification mechanism against their host plant’s sweet toxin.

Plants produce a large arsenal of toxic compounds in order fend off herbivorous insects. To make sure that the toxicity of these defensive substances will not harm the plants themselves, many plants add a sugar molecule to some of their toxins. Digestive enzymes called glycosidases in the insect gut usually cleave off this sugar to release the toxin − with harmful effects on the insects.


Schematic representation of lyciumoside IV deglycosylation by a glycosidase in the gut of Manduca sexta caterpillar

Sagar Pandit / Max Planck Institute for Chemical Ecology


Molting failure caused by lyciumoside IV ingestion in glycosidase-silenced Manduca sexta caterpillars (b, c, d) in comparison to the control (a)

Sagar Pandit / Max Planck Institute for Chemical Ecology

Scientists at the Max Planck Institute for Chemical Ecology in Jena, Germany, now found the opposite mechanism: a defensive compound of the wild tobacco species Nicotiana attenuata which is toxic with sugar molecules bound to it and a glycosidase in the gut of the tobacco hornworm Manduca sexta which removes one sugar from this toxin to convert it to a non-toxic form. This is the first time that the role of deglycosylation in detoxification as an insect counter-adaptation could be shown (Nature Communications, October 2015).

Plants add sugars to their defensive compounds in order to avoid self-intoxication and to facilitate their transport and storage. The process of adding sugar to a chemical compound is called glycosylation. When herbivorous insects ingest these glycosylated toxins while feeding on plants, sugar-cleaving gut enzymes called glycosidases cleave these sugars from the defensive substances and the toxins are released in the midgut.

The toxins can then exert deleterious effects on the insects’ growth and fitness.

Scientists from the Max Planck Institute for Chemical Ecology examined defensive substances in the coyote tobacco Nicotiana attenuata. They were especially interested in a compound named lyciumoside IV which contains three sugar molecules and is toxic to larvae of the tobacco hornworm Manduca sexta. The ingestion of lyciumoside IV should usually cause severe body mass reduction in these caterpillars.

It was thought that the sugar molecules were removed from lyciumoside IV in the Manduca sexta midgut and the released toxin caused these deleterious effects. However, what the researchers discovered contradicted the current understanding of the role of deglycosylation: lyciumoside IV is not completely deglycosylated, and what is more important, this compound itself and not its deglycosylated form is toxic.

Glycosidases in the midgut of the tobacco hornworm larvae remove only one sugar molecule from lyciumoside IV which converts the toxin into a novel compound. Ingestion of this compound exerts no detrimental effects on the insects as those exerted by the ingestion of lyciumoside IV, suggesting that this novel compound is a detoxified form of lyciumoside IV. For the first time, scientists showed that removing a sugar molecule from a plant’s defensive compound can also result in detoxification.

“That glucosidases which play an important role in digestion and toxin activation also function the opposite way and detoxify plant defensive substances, opens a new dimension of the plant-herbivore arms race. This discovery of an unusual detoxification mechanism can be mainly credited to our unbiased, reverse genetics-based ‘ask the herbivore’ and ‘ask the ecosystem’ approaches.

The results obtained by using these approaches enabled us to find, understand and explain the mechanism which functions exactly contrary to the current understanding of glycosidases and detoxification mechanisms. Thus, this unbiased approach is one of our major contributions to the understanding of the complexity of plant defenses and insect adaptations,” explains Sagar Pandit, one of the senior authors of the study.

The study revealed the significance of this unusual detoxification mechanism to the caterpillars in nature. The scientists first found the glycosidase responsible for removing the sugar from lyciumoside IV. Then they generated larvae with a suppressed glycosidase activity by silencing the respective larval glycosidase gene to study the effect of lyciumoside IV ingestion on the disabled larvae.

The larval gene was silenced using a modern method called “plant-mediated RNA interference” in which transgenic tobacco plants were generated to produce the specific gene-silencing signal, which was transferred to larvae feeding on these plants. Interestingly, when the glycosidase-silenced larvae ingested lyciumoside IV, they failed to molt and eventually died. Glycosidase-silenced larvae which ingested the deglycosylated product did not show such molting failure and mortality. This suggested that the detoxification of lyciumoside IV is necessary to avoid these deleterious effects.

Many herbivores are known to store their host plant’s toxic compounds in specialized compartments of their body, a process which is called sequestration. Usually, herbivores use sequestered compounds as their own defense against predators and parasites. The scientists therefore examined whether lyciumoside IV or its detoxified product protect Manduca sexta caterpillars against their natural enemies. Field experiments with glycosidase-silenced caterpillars revealed that the wolf spider Camptocosa parallela, a predator of tobacco hornworm larvae, captured and killed about the same number of glucosidase-silenced larvae and controls, but ingested significantly fewer glucosidase-silenced larvae.

Larvae that had been coated with lyciumoside IV deterred the spiders; such deterrence was not observed when they were coated with the detoxification product. This clearly demonstrates that lyciumoside IV would have a protective effect if it was sequestered by the larvae. However, as the researchers showed, Manduca sexta larvae prefer to detoxify this plant defensive compound rather than sequestering it. The scientists infer that these larvae have not yet evolved the mechanism to co-opt lyciumocide IV and so they have to detoxify it in order to avoid the molting failure and mortality caused by its ingestion.

Now, the scientists want to find out whether there are natural Manduca sexta variants or related Manduca species that have already evolved a mechanism to co-opt lyciumoside IV and simultaneously avoid mortality and impairments. They are also interested in the question why the deglycosylation is restricted to the removal of only one sugar. By studying the responses to lyciumoside IV in Nicotiana attenuata’s other specialist and generalist herbivores, they want to shed more light into this particular plant defense and the insects’ counter-adaptations. [AO]

Original Publication:
Poreddy, S., Mitra, S., Schöttner, M., Chandran, J. N., Schneider, B., Baldwin, I. T., Kumar, P., Pandit, S. S. (2015). Detoxification of hostplant’s chemical defense rather than its anti-predator co-option drives β-glucosidase-mediated lepidopteran counter-adaptation. Nature Communications, 6:8525, doi:10.1038/ncomms9525
http://dx.doi.org/10.1038/ncomms9525

Further Information:
Sagar S. Pandit, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07743 Jena, Germany, +49 3641 57-1332, E-Mail spandit@ice.mpg.de
Ian T. Baldwin, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07743 Jena, Germany, +49 3641 57-1101, E-Mail baldwin@ice.mpg.de

Contact and Media Requests:
Angela Overmeyer M.A., Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07743 Jena, +49 3641 57-2110, E-Mail overmeyer@ice.mpg.de

Download high-resolution images via http://www.ice.mpg.de/ext/downloads2015.html

Angela Overmeyer | Max-Planck-Institut für chemische Ökologie

More articles from Life Sciences:

nachricht At last, butterflies get a bigger, better evolutionary tree
16.02.2018 | Florida Museum of Natural History

nachricht New treatment strategies for chronic kidney disease from the animal kingdom
16.02.2018 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

Im Focus: Autonomous 3D scanner supports individual manufacturing processes

Let’s say the armrest is broken in your vintage car. As things stand, you would need a lot of luck and persistence to find the right spare part. But in the world of Industrie 4.0 and production with batch sizes of one, you can simply scan the armrest and print it out. This is made possible by the first ever 3D scanner capable of working autonomously and in real time. The autonomous scanning system will be on display at the Hannover Messe Preview on February 6 and at the Hannover Messe proper from April 23 to 27, 2018 (Hall 6, Booth A30).

Part of the charm of vintage cars is that they stopped making them long ago, so it is special when you do see one out on the roads. If something breaks or...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Fingerprints of quantum entanglement

16.02.2018 | Information Technology

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers

16.02.2018 | Health and Medicine

Hubble sees Neptune's mysterious shrinking storm

16.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>