Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Reducing the sweetness to survive

23.10.2015

Manduca sexta caterpillars' developed a surprising detoxification mechanism against their host plant’s sweet toxin.

Plants produce a large arsenal of toxic compounds in order fend off herbivorous insects. To make sure that the toxicity of these defensive substances will not harm the plants themselves, many plants add a sugar molecule to some of their toxins. Digestive enzymes called glycosidases in the insect gut usually cleave off this sugar to release the toxin − with harmful effects on the insects.


Schematic representation of lyciumoside IV deglycosylation by a glycosidase in the gut of Manduca sexta caterpillar

Sagar Pandit / Max Planck Institute for Chemical Ecology


Molting failure caused by lyciumoside IV ingestion in glycosidase-silenced Manduca sexta caterpillars (b, c, d) in comparison to the control (a)

Sagar Pandit / Max Planck Institute for Chemical Ecology

Scientists at the Max Planck Institute for Chemical Ecology in Jena, Germany, now found the opposite mechanism: a defensive compound of the wild tobacco species Nicotiana attenuata which is toxic with sugar molecules bound to it and a glycosidase in the gut of the tobacco hornworm Manduca sexta which removes one sugar from this toxin to convert it to a non-toxic form. This is the first time that the role of deglycosylation in detoxification as an insect counter-adaptation could be shown (Nature Communications, October 2015).

Plants add sugars to their defensive compounds in order to avoid self-intoxication and to facilitate their transport and storage. The process of adding sugar to a chemical compound is called glycosylation. When herbivorous insects ingest these glycosylated toxins while feeding on plants, sugar-cleaving gut enzymes called glycosidases cleave these sugars from the defensive substances and the toxins are released in the midgut.

The toxins can then exert deleterious effects on the insects’ growth and fitness.

Scientists from the Max Planck Institute for Chemical Ecology examined defensive substances in the coyote tobacco Nicotiana attenuata. They were especially interested in a compound named lyciumoside IV which contains three sugar molecules and is toxic to larvae of the tobacco hornworm Manduca sexta. The ingestion of lyciumoside IV should usually cause severe body mass reduction in these caterpillars.

It was thought that the sugar molecules were removed from lyciumoside IV in the Manduca sexta midgut and the released toxin caused these deleterious effects. However, what the researchers discovered contradicted the current understanding of the role of deglycosylation: lyciumoside IV is not completely deglycosylated, and what is more important, this compound itself and not its deglycosylated form is toxic.

Glycosidases in the midgut of the tobacco hornworm larvae remove only one sugar molecule from lyciumoside IV which converts the toxin into a novel compound. Ingestion of this compound exerts no detrimental effects on the insects as those exerted by the ingestion of lyciumoside IV, suggesting that this novel compound is a detoxified form of lyciumoside IV. For the first time, scientists showed that removing a sugar molecule from a plant’s defensive compound can also result in detoxification.

“That glucosidases which play an important role in digestion and toxin activation also function the opposite way and detoxify plant defensive substances, opens a new dimension of the plant-herbivore arms race. This discovery of an unusual detoxification mechanism can be mainly credited to our unbiased, reverse genetics-based ‘ask the herbivore’ and ‘ask the ecosystem’ approaches.

The results obtained by using these approaches enabled us to find, understand and explain the mechanism which functions exactly contrary to the current understanding of glycosidases and detoxification mechanisms. Thus, this unbiased approach is one of our major contributions to the understanding of the complexity of plant defenses and insect adaptations,” explains Sagar Pandit, one of the senior authors of the study.

The study revealed the significance of this unusual detoxification mechanism to the caterpillars in nature. The scientists first found the glycosidase responsible for removing the sugar from lyciumoside IV. Then they generated larvae with a suppressed glycosidase activity by silencing the respective larval glycosidase gene to study the effect of lyciumoside IV ingestion on the disabled larvae.

The larval gene was silenced using a modern method called “plant-mediated RNA interference” in which transgenic tobacco plants were generated to produce the specific gene-silencing signal, which was transferred to larvae feeding on these plants. Interestingly, when the glycosidase-silenced larvae ingested lyciumoside IV, they failed to molt and eventually died. Glycosidase-silenced larvae which ingested the deglycosylated product did not show such molting failure and mortality. This suggested that the detoxification of lyciumoside IV is necessary to avoid these deleterious effects.

Many herbivores are known to store their host plant’s toxic compounds in specialized compartments of their body, a process which is called sequestration. Usually, herbivores use sequestered compounds as their own defense against predators and parasites. The scientists therefore examined whether lyciumoside IV or its detoxified product protect Manduca sexta caterpillars against their natural enemies. Field experiments with glycosidase-silenced caterpillars revealed that the wolf spider Camptocosa parallela, a predator of tobacco hornworm larvae, captured and killed about the same number of glucosidase-silenced larvae and controls, but ingested significantly fewer glucosidase-silenced larvae.

Larvae that had been coated with lyciumoside IV deterred the spiders; such deterrence was not observed when they were coated with the detoxification product. This clearly demonstrates that lyciumoside IV would have a protective effect if it was sequestered by the larvae. However, as the researchers showed, Manduca sexta larvae prefer to detoxify this plant defensive compound rather than sequestering it. The scientists infer that these larvae have not yet evolved the mechanism to co-opt lyciumocide IV and so they have to detoxify it in order to avoid the molting failure and mortality caused by its ingestion.

Now, the scientists want to find out whether there are natural Manduca sexta variants or related Manduca species that have already evolved a mechanism to co-opt lyciumoside IV and simultaneously avoid mortality and impairments. They are also interested in the question why the deglycosylation is restricted to the removal of only one sugar. By studying the responses to lyciumoside IV in Nicotiana attenuata’s other specialist and generalist herbivores, they want to shed more light into this particular plant defense and the insects’ counter-adaptations. [AO]

Original Publication:
Poreddy, S., Mitra, S., Schöttner, M., Chandran, J. N., Schneider, B., Baldwin, I. T., Kumar, P., Pandit, S. S. (2015). Detoxification of hostplant’s chemical defense rather than its anti-predator co-option drives β-glucosidase-mediated lepidopteran counter-adaptation. Nature Communications, 6:8525, doi:10.1038/ncomms9525
http://dx.doi.org/10.1038/ncomms9525

Further Information:
Sagar S. Pandit, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07743 Jena, Germany, +49 3641 57-1332, E-Mail spandit@ice.mpg.de
Ian T. Baldwin, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07743 Jena, Germany, +49 3641 57-1101, E-Mail baldwin@ice.mpg.de

Contact and Media Requests:
Angela Overmeyer M.A., Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07743 Jena, +49 3641 57-2110, E-Mail overmeyer@ice.mpg.de

Download high-resolution images via http://www.ice.mpg.de/ext/downloads2015.html

Angela Overmeyer | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>