Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rapid decline in bumblebee species caused by climate change, study finds

10.07.2015

In the most comprehensive analysis of climate change impacts on critical pollinators, researchers have found that rapid declines in bumblebee species across North America and Europe have a strong link to climate change. The study was published in Science today. It was conducted by scientists from University of Ottawa and other North American institutions. Scientists from the Helmholtz Centre for Environmental Research (UFZ), as one of the major partners from Europe, were responsible for coordinating basic data collection.

“Pollinators are vital for food security and our economy, and widespread losses of pollinators due to climate change will diminish both,” stated Professor Jeremy Kerr, Department of Biology. “We need to figure out how we can improve the outlook for pollinators at continental scales, but the most important thing we can do is begin to take serious action to reduce the rate of climate change.”


Bumblebee

UFZ

Though previous studies conducted on other species at smaller scales have showen that species expand to the North Pole as climate warms, these new findings show that bumblebee species are not re-locating. Instead, they are losing range from the south, disappearing over huge areas with rapid warming at continental scales.

This is the first cross-continental analysis to study how a large group of pollinator responds to climate change. The study has also discovered a new biological mechanism that explains how species may respond to climate change based on their evolutionary past.

"We’ve lost around 300 km from the ranges of bumblebees in southern Europe and North America. The scale and pace of these losses are unprecedented. We need new strategies to help these species cope with the effects of human-caused climate change, perhaps assisting them to shift into northern areas," urged professor Kerr.

The study used long-term observations across Europe and North America over 110 years with a database of approximately 423,000 georeferenced observations for 67 bumblebee species. The observations tested for latitudinal and thermal limits and movements along elevation gradients. Together with professor Pierre Rasmont from the University of Mons, Belgium, Dr. Oliver Schweiger (UFZ) was responsible for coordinating the collection of approximately 240,000 observations. Tilo Arnhold

Publication:
Jeremy T. Kerr, Alana Pindar, Paul Galpern, Laurence Packer, Simon G. Potts, Stuart M. Roberts, Pierre Rasmont, Oliver Schweiger, Sheila R. Colla, Leif L. Richardson, David L. Wagner, Lawrence F.Gall, Derek S. Sikes, Alberto Pantoja (2015): Climate change impacts on bumblebees converge across continents. Science. 09 July 2015.

The study was funded by the National Sciences and Engineering Research Council of Canada strategic network (CANPOLIN: Canadian Pollination Initiative) and the European Union (FP7, project STEP – Status and Trends of European Pollinators).

Further Informationen:
Dr. Oliver Schweiger
Helmholtz Centre for Environmental Research (UFZ)
http://www.ufz.de/index.php?en=818
and
Prof. Jeremy T. Kerr
Department of Biology, University of Ottawa, Canada
Tel. +1 613-562-5800 ext. 4577
http://science.uottawa.ca/biology/people/kerr-jeremy-t
http://www.macroecology.ca/Welcome.html
or via
Tilo Arnhold, Susanne Hufe (UFZ press office)
Phone: +49 (0)341-235-1635, -1630
http://www.ufz.de/index.php?en=640
and
Kina Leclair
Media Relations Officer, University of Ottawa
Office: +1 613-562-5800 (2529) & Cell: 613-762-2908
http://www.uottawa.ca/media/media-releases.html

Links:
EU Project „CLIMIT - CLimate change impacts on Insects and their MITigation“ (EU FP 6, ERA-Net project BiodivERsA)
http://www.climit-project.net/

EU Project „STEP - Status and Trends of European Pollinators“ (EU FP 7, Collaborative Project, 2010 – 2015
http://www.step-project.net/

Birds and butterflies are unable to track climate change (Press release, 09 January 2012)
http://www.ufz.de/index.php?en=30100

In the Helmholtz Centre for Environmental Research (UFZ), scientists conduct research into the causes and consequences of far-reaching environmental changes. Their areas of study cover water resources, biodiversity, the consequences of climate change and possible adaptation strategies, environmental technologies and biotechnologies, bio-energy, the effects of chemicals in the environment and the way they influence health, modelling and social-scientific issues. Its guiding principle: Our research contributes to the sustainable use of natural resources and helps to provide long-term protection for these vital assets in the face of global change. The UFZ employs more than 1,100 staff at its sites in Leipzig, Halle and Magdeburg. It is funded by the federal government, Saxony and Saxony-Anhalt. http://www.ufz.de/

The Helmholtz Association contributes to solving major and urgent issues in society, science and industry through scientific excellence in six research areas: Energy, earth and environment, health, key technologies, structure of matter as well as aviation, aerospace and transportation. The Helmholtz Association is the largest scientific organisation in Germany, with 35,000 employees in 18 research centres and an annual budget of around €3.8 billion. Its work is carried out in the tradition of the great natural scientist Hermann von Helmholtz (1821-1894). http://www.helmholtz.de/

Weitere Informationen:

http://www.ufz.de/index.php?en=33996

Susanne Hufe | Helmholtz-Zentrum für Umweltforschung - UFZ

More articles from Life Sciences:

nachricht Individual Receptors Caught at Work
19.10.2017 | Julius-Maximilians-Universität Würzburg

nachricht Rapid environmental change makes species more vulnerable to extinction
19.10.2017 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

New procedure enables cultivation of human brain sections in the petri dish

19.10.2017 | Life Sciences

The “everywhere” protein: honour for the unravellor of its biology

19.10.2017 | Life Sciences

Rapid environmental change makes species more vulnerable to extinction

19.10.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>