Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rapid decline in bumblebee species caused by climate change, study finds

10.07.2015

In the most comprehensive analysis of climate change impacts on critical pollinators, researchers have found that rapid declines in bumblebee species across North America and Europe have a strong link to climate change. The study was published in Science today. It was conducted by scientists from University of Ottawa and other North American institutions. Scientists from the Helmholtz Centre for Environmental Research (UFZ), as one of the major partners from Europe, were responsible for coordinating basic data collection.

“Pollinators are vital for food security and our economy, and widespread losses of pollinators due to climate change will diminish both,” stated Professor Jeremy Kerr, Department of Biology. “We need to figure out how we can improve the outlook for pollinators at continental scales, but the most important thing we can do is begin to take serious action to reduce the rate of climate change.”


Bumblebee

UFZ

Though previous studies conducted on other species at smaller scales have showen that species expand to the North Pole as climate warms, these new findings show that bumblebee species are not re-locating. Instead, they are losing range from the south, disappearing over huge areas with rapid warming at continental scales.

This is the first cross-continental analysis to study how a large group of pollinator responds to climate change. The study has also discovered a new biological mechanism that explains how species may respond to climate change based on their evolutionary past.

"We’ve lost around 300 km from the ranges of bumblebees in southern Europe and North America. The scale and pace of these losses are unprecedented. We need new strategies to help these species cope with the effects of human-caused climate change, perhaps assisting them to shift into northern areas," urged professor Kerr.

The study used long-term observations across Europe and North America over 110 years with a database of approximately 423,000 georeferenced observations for 67 bumblebee species. The observations tested for latitudinal and thermal limits and movements along elevation gradients. Together with professor Pierre Rasmont from the University of Mons, Belgium, Dr. Oliver Schweiger (UFZ) was responsible for coordinating the collection of approximately 240,000 observations. Tilo Arnhold

Publication:
Jeremy T. Kerr, Alana Pindar, Paul Galpern, Laurence Packer, Simon G. Potts, Stuart M. Roberts, Pierre Rasmont, Oliver Schweiger, Sheila R. Colla, Leif L. Richardson, David L. Wagner, Lawrence F.Gall, Derek S. Sikes, Alberto Pantoja (2015): Climate change impacts on bumblebees converge across continents. Science. 09 July 2015.

The study was funded by the National Sciences and Engineering Research Council of Canada strategic network (CANPOLIN: Canadian Pollination Initiative) and the European Union (FP7, project STEP – Status and Trends of European Pollinators).

Further Informationen:
Dr. Oliver Schweiger
Helmholtz Centre for Environmental Research (UFZ)
http://www.ufz.de/index.php?en=818
and
Prof. Jeremy T. Kerr
Department of Biology, University of Ottawa, Canada
Tel. +1 613-562-5800 ext. 4577
http://science.uottawa.ca/biology/people/kerr-jeremy-t
http://www.macroecology.ca/Welcome.html
or via
Tilo Arnhold, Susanne Hufe (UFZ press office)
Phone: +49 (0)341-235-1635, -1630
http://www.ufz.de/index.php?en=640
and
Kina Leclair
Media Relations Officer, University of Ottawa
Office: +1 613-562-5800 (2529) & Cell: 613-762-2908
http://www.uottawa.ca/media/media-releases.html

Links:
EU Project „CLIMIT - CLimate change impacts on Insects and their MITigation“ (EU FP 6, ERA-Net project BiodivERsA)
http://www.climit-project.net/

EU Project „STEP - Status and Trends of European Pollinators“ (EU FP 7, Collaborative Project, 2010 – 2015
http://www.step-project.net/

Birds and butterflies are unable to track climate change (Press release, 09 January 2012)
http://www.ufz.de/index.php?en=30100

In the Helmholtz Centre for Environmental Research (UFZ), scientists conduct research into the causes and consequences of far-reaching environmental changes. Their areas of study cover water resources, biodiversity, the consequences of climate change and possible adaptation strategies, environmental technologies and biotechnologies, bio-energy, the effects of chemicals in the environment and the way they influence health, modelling and social-scientific issues. Its guiding principle: Our research contributes to the sustainable use of natural resources and helps to provide long-term protection for these vital assets in the face of global change. The UFZ employs more than 1,100 staff at its sites in Leipzig, Halle and Magdeburg. It is funded by the federal government, Saxony and Saxony-Anhalt. http://www.ufz.de/

The Helmholtz Association contributes to solving major and urgent issues in society, science and industry through scientific excellence in six research areas: Energy, earth and environment, health, key technologies, structure of matter as well as aviation, aerospace and transportation. The Helmholtz Association is the largest scientific organisation in Germany, with 35,000 employees in 18 research centres and an annual budget of around €3.8 billion. Its work is carried out in the tradition of the great natural scientist Hermann von Helmholtz (1821-1894). http://www.helmholtz.de/

Weitere Informationen:

http://www.ufz.de/index.php?en=33996

Susanne Hufe | Helmholtz-Zentrum für Umweltforschung - UFZ

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>