Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rapid adaptation to a changing environment

28.04.2016

Together with two international colleagues, Kiel-based biologist receives 900,000 euros for research

Kiel-based biologist Dr. Sebastian Fraune from Kiel University's Cell and Developmental Biology working group has recently succeeded in gaining significant individual funding: out of around 200 applications, his new research project, together with six other projects, claimed this year's funding awarded by the international "Human Frontier Science Program" (HFSP).


The sea anemone Nematostella vectensis grows to a length of 5-8 centimetres and is commonly found off North Atlantic coasts.

Photo: Dr. Adam Reitzel


The sea anemones are easily bred in the laboratory, and thanks to their simple structure they often serve as model organisms in biology.

Photo: Christian Urban, Kiel University

Together with a US-American and an Australian colleague, Fraune will now be working on the question of how living things are able to quickly adapt to changed environmental conditions influenced by climate change. Over the next three years, the equivalent of 900,000 euros of HFSP funds will now be available to the Kiel-based biologist as well as Dr. Adam Reitzel from the University of North Carolina at Charlotte and Dr. Sylvain Foret from the Australian National University in Canberra for this research work.

Living things adapt to their environment from generation to generation by gradually changing and reconfiguring their genetic information – this is how the traditional theory of evolution explains the ability of all living things to change. As a result of global warming, however, many species are displaying an extremely quick ability to adapt to changing living conditions.

Clearly, factors that are to date unknown must be responsible for this. According to Fraune, Reitzel and Foret, epigenetics, i.e. heredity controlled by changes in chromosomes, and bacterial colonisation of an organism could be the driving forces behind this accelerated evolution. As unlike the composition of genes, these two factors can react quickly to environmental change.

The researchers plan to study the influence of epigenetics and bacterial colonisation on the sea anemone species Nematostella vectensis. They aim to find out how these creatures can adapt themselves specifically to changes in water temperature – and how they pass these adaptations on to their progeny. The first findings suggest that the anemones do this by changing their bacterial colonisation. "The already noticeable effects of climate change show that the traditional model of evolution is not adequate to explain environmental adaptations – it is simply too slow. We want to find out whether the changes in the bacterial composition of an organism and the influence of epigenetics can provide the missing explanations", says Fraune.

Using the adaptation to temperature of sea anemones living in environments strongly affected by climate change as an example, the aim of the research project is to determine whether non-genetic factors may be responsible for the ability of living things to quickly adapt to changing environmental conditions. The answer to these questions could provide fundamental findings for a new research field: scientists around the world have begun to redefine life as a functional unit of different living things beyond the boundaries of biological species.

They call this type of unit a metaorganism. For a few weeks now, Kiel University has had its own new Collaborative Research Centre (CRC) 1182 "Origin and Function of Metaorganisms". Fraune is involved in this with two additional projects. The new CRC deals with all aspects of the issue of the origin and effects of interactions between living things, micro-organisms and environment defined as metaorganisms. Fraune's HFSP project could provide an important contribution to this research by highlighting the role of interactions between organism and bacteria in the context of environment adaptation.

About the Human Frontier Science Program
The Human Frontier Science Program (HFSP) is an international research support program in life sciences. Key elements are, in particular, innovative, cutting edge research approaches that are expected to extend the borders of research fields within the life sciences. HFSP funding is also aimed at establishing international partnerships, supporting young scientists and strengthening interdisciplinary cooperation. The HFSP program is one of the most important and financially strongest international sponsors of research into life sciences, especially in its support of young scientists. It is sponsored by the European Union (EU) and ten other non-EU states.

Photos/material is available for download:

http://www.uni-kiel.de/download/pm/2016/2016-129-1.jpg
The sea anemone Nematostella vectensis grows to a length of 5-8 centimetres and is commonly found off North Atlantic coasts.
Photo: Dr. Adam Reitzel

http://www.uni-kiel.de/download/pm/2016/2016-129-2.jpg
The sea anemones are easily bred in the laboratory, and thanks to their simple structure they often serve as model organisms in biology.
Photo: Christian Urban, Kiel University

Contact:
Dr. Sebastian Fraune
Zoological Institute, Kiel University
Tel.: +49 (0)431-880-4149
E-Mail: sfraune@zoologie.uni-kiel.de

More information:
Dr. Sebastian Fraune's website:
http://www.bosch.zoologie.uni-kiel.de/?page_id=757

“Human Frontier Science Program”:
http://www.hfsp.org/

Collaborative Research Centre (CRC) 1182 "Origin and Function of Metaorganisms":
http://www.metaorganism-research.com/

Kiel University
Press, Communication and Marketing, Dr. Boris Pawlowski
Address: D-24098 Kiel, phone: +49 (0431) 880-2104, fax: +49 (0431) 880-1355
E-Mail: ► presse@uv.uni-kiel.de, Internet: ► www.uni-kiel.de
Twitter: ► www.twitter.com/kieluni, Facebook: ► www.facebook.com/kieluni
Text / Redaktion: Christian Urban

Christian Urban | Christian-Albrechts-Universität zu Kiel

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>