Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rapid adaptation to a changing environment

28.04.2016

Together with two international colleagues, Kiel-based biologist receives 900,000 euros for research

Kiel-based biologist Dr. Sebastian Fraune from Kiel University's Cell and Developmental Biology working group has recently succeeded in gaining significant individual funding: out of around 200 applications, his new research project, together with six other projects, claimed this year's funding awarded by the international "Human Frontier Science Program" (HFSP).


The sea anemone Nematostella vectensis grows to a length of 5-8 centimetres and is commonly found off North Atlantic coasts.

Photo: Dr. Adam Reitzel


The sea anemones are easily bred in the laboratory, and thanks to their simple structure they often serve as model organisms in biology.

Photo: Christian Urban, Kiel University

Together with a US-American and an Australian colleague, Fraune will now be working on the question of how living things are able to quickly adapt to changed environmental conditions influenced by climate change. Over the next three years, the equivalent of 900,000 euros of HFSP funds will now be available to the Kiel-based biologist as well as Dr. Adam Reitzel from the University of North Carolina at Charlotte and Dr. Sylvain Foret from the Australian National University in Canberra for this research work.

Living things adapt to their environment from generation to generation by gradually changing and reconfiguring their genetic information – this is how the traditional theory of evolution explains the ability of all living things to change. As a result of global warming, however, many species are displaying an extremely quick ability to adapt to changing living conditions.

Clearly, factors that are to date unknown must be responsible for this. According to Fraune, Reitzel and Foret, epigenetics, i.e. heredity controlled by changes in chromosomes, and bacterial colonisation of an organism could be the driving forces behind this accelerated evolution. As unlike the composition of genes, these two factors can react quickly to environmental change.

The researchers plan to study the influence of epigenetics and bacterial colonisation on the sea anemone species Nematostella vectensis. They aim to find out how these creatures can adapt themselves specifically to changes in water temperature – and how they pass these adaptations on to their progeny. The first findings suggest that the anemones do this by changing their bacterial colonisation. "The already noticeable effects of climate change show that the traditional model of evolution is not adequate to explain environmental adaptations – it is simply too slow. We want to find out whether the changes in the bacterial composition of an organism and the influence of epigenetics can provide the missing explanations", says Fraune.

Using the adaptation to temperature of sea anemones living in environments strongly affected by climate change as an example, the aim of the research project is to determine whether non-genetic factors may be responsible for the ability of living things to quickly adapt to changing environmental conditions. The answer to these questions could provide fundamental findings for a new research field: scientists around the world have begun to redefine life as a functional unit of different living things beyond the boundaries of biological species.

They call this type of unit a metaorganism. For a few weeks now, Kiel University has had its own new Collaborative Research Centre (CRC) 1182 "Origin and Function of Metaorganisms". Fraune is involved in this with two additional projects. The new CRC deals with all aspects of the issue of the origin and effects of interactions between living things, micro-organisms and environment defined as metaorganisms. Fraune's HFSP project could provide an important contribution to this research by highlighting the role of interactions between organism and bacteria in the context of environment adaptation.

About the Human Frontier Science Program
The Human Frontier Science Program (HFSP) is an international research support program in life sciences. Key elements are, in particular, innovative, cutting edge research approaches that are expected to extend the borders of research fields within the life sciences. HFSP funding is also aimed at establishing international partnerships, supporting young scientists and strengthening interdisciplinary cooperation. The HFSP program is one of the most important and financially strongest international sponsors of research into life sciences, especially in its support of young scientists. It is sponsored by the European Union (EU) and ten other non-EU states.

Photos/material is available for download:

http://www.uni-kiel.de/download/pm/2016/2016-129-1.jpg
The sea anemone Nematostella vectensis grows to a length of 5-8 centimetres and is commonly found off North Atlantic coasts.
Photo: Dr. Adam Reitzel

http://www.uni-kiel.de/download/pm/2016/2016-129-2.jpg
The sea anemones are easily bred in the laboratory, and thanks to their simple structure they often serve as model organisms in biology.
Photo: Christian Urban, Kiel University

Contact:
Dr. Sebastian Fraune
Zoological Institute, Kiel University
Tel.: +49 (0)431-880-4149
E-Mail: sfraune@zoologie.uni-kiel.de

More information:
Dr. Sebastian Fraune's website:
http://www.bosch.zoologie.uni-kiel.de/?page_id=757

“Human Frontier Science Program”:
http://www.hfsp.org/

Collaborative Research Centre (CRC) 1182 "Origin and Function of Metaorganisms":
http://www.metaorganism-research.com/

Kiel University
Press, Communication and Marketing, Dr. Boris Pawlowski
Address: D-24098 Kiel, phone: +49 (0431) 880-2104, fax: +49 (0431) 880-1355
E-Mail: ► presse@uv.uni-kiel.de, Internet: ► www.uni-kiel.de
Twitter: ► www.twitter.com/kieluni, Facebook: ► www.facebook.com/kieluni
Text / Redaktion: Christian Urban

Christian Urban | Christian-Albrechts-Universität zu Kiel

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>