Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rapid adaptation to a changing environment

28.04.2016

Together with two international colleagues, Kiel-based biologist receives 900,000 euros for research

Kiel-based biologist Dr. Sebastian Fraune from Kiel University's Cell and Developmental Biology working group has recently succeeded in gaining significant individual funding: out of around 200 applications, his new research project, together with six other projects, claimed this year's funding awarded by the international "Human Frontier Science Program" (HFSP).


The sea anemone Nematostella vectensis grows to a length of 5-8 centimetres and is commonly found off North Atlantic coasts.

Photo: Dr. Adam Reitzel


The sea anemones are easily bred in the laboratory, and thanks to their simple structure they often serve as model organisms in biology.

Photo: Christian Urban, Kiel University

Together with a US-American and an Australian colleague, Fraune will now be working on the question of how living things are able to quickly adapt to changed environmental conditions influenced by climate change. Over the next three years, the equivalent of 900,000 euros of HFSP funds will now be available to the Kiel-based biologist as well as Dr. Adam Reitzel from the University of North Carolina at Charlotte and Dr. Sylvain Foret from the Australian National University in Canberra for this research work.

Living things adapt to their environment from generation to generation by gradually changing and reconfiguring their genetic information – this is how the traditional theory of evolution explains the ability of all living things to change. As a result of global warming, however, many species are displaying an extremely quick ability to adapt to changing living conditions.

Clearly, factors that are to date unknown must be responsible for this. According to Fraune, Reitzel and Foret, epigenetics, i.e. heredity controlled by changes in chromosomes, and bacterial colonisation of an organism could be the driving forces behind this accelerated evolution. As unlike the composition of genes, these two factors can react quickly to environmental change.

The researchers plan to study the influence of epigenetics and bacterial colonisation on the sea anemone species Nematostella vectensis. They aim to find out how these creatures can adapt themselves specifically to changes in water temperature – and how they pass these adaptations on to their progeny. The first findings suggest that the anemones do this by changing their bacterial colonisation. "The already noticeable effects of climate change show that the traditional model of evolution is not adequate to explain environmental adaptations – it is simply too slow. We want to find out whether the changes in the bacterial composition of an organism and the influence of epigenetics can provide the missing explanations", says Fraune.

Using the adaptation to temperature of sea anemones living in environments strongly affected by climate change as an example, the aim of the research project is to determine whether non-genetic factors may be responsible for the ability of living things to quickly adapt to changing environmental conditions. The answer to these questions could provide fundamental findings for a new research field: scientists around the world have begun to redefine life as a functional unit of different living things beyond the boundaries of biological species.

They call this type of unit a metaorganism. For a few weeks now, Kiel University has had its own new Collaborative Research Centre (CRC) 1182 "Origin and Function of Metaorganisms". Fraune is involved in this with two additional projects. The new CRC deals with all aspects of the issue of the origin and effects of interactions between living things, micro-organisms and environment defined as metaorganisms. Fraune's HFSP project could provide an important contribution to this research by highlighting the role of interactions between organism and bacteria in the context of environment adaptation.

About the Human Frontier Science Program
The Human Frontier Science Program (HFSP) is an international research support program in life sciences. Key elements are, in particular, innovative, cutting edge research approaches that are expected to extend the borders of research fields within the life sciences. HFSP funding is also aimed at establishing international partnerships, supporting young scientists and strengthening interdisciplinary cooperation. The HFSP program is one of the most important and financially strongest international sponsors of research into life sciences, especially in its support of young scientists. It is sponsored by the European Union (EU) and ten other non-EU states.

Photos/material is available for download:

http://www.uni-kiel.de/download/pm/2016/2016-129-1.jpg
The sea anemone Nematostella vectensis grows to a length of 5-8 centimetres and is commonly found off North Atlantic coasts.
Photo: Dr. Adam Reitzel

http://www.uni-kiel.de/download/pm/2016/2016-129-2.jpg
The sea anemones are easily bred in the laboratory, and thanks to their simple structure they often serve as model organisms in biology.
Photo: Christian Urban, Kiel University

Contact:
Dr. Sebastian Fraune
Zoological Institute, Kiel University
Tel.: +49 (0)431-880-4149
E-Mail: sfraune@zoologie.uni-kiel.de

More information:
Dr. Sebastian Fraune's website:
http://www.bosch.zoologie.uni-kiel.de/?page_id=757

“Human Frontier Science Program”:
http://www.hfsp.org/

Collaborative Research Centre (CRC) 1182 "Origin and Function of Metaorganisms":
http://www.metaorganism-research.com/

Kiel University
Press, Communication and Marketing, Dr. Boris Pawlowski
Address: D-24098 Kiel, phone: +49 (0431) 880-2104, fax: +49 (0431) 880-1355
E-Mail: ► presse@uv.uni-kiel.de, Internet: ► www.uni-kiel.de
Twitter: ► www.twitter.com/kieluni, Facebook: ► www.facebook.com/kieluni
Text / Redaktion: Christian Urban

Christian Urban | Christian-Albrechts-Universität zu Kiel

More articles from Life Sciences:

nachricht Molecular Force Sensors
20.09.2017 | Max-Planck-Institut für Biochemie

nachricht Foster tadpoles trigger parental instinct in poison frogs
20.09.2017 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Molecular Force Sensors

20.09.2017 | Life Sciences

Producing electricity during flight

20.09.2017 | Power and Electrical Engineering

Tiny lasers from a gallery of whispers

20.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>