Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rapid adaptation to a changing environment

28.04.2016

Together with two international colleagues, Kiel-based biologist receives 900,000 euros for research

Kiel-based biologist Dr. Sebastian Fraune from Kiel University's Cell and Developmental Biology working group has recently succeeded in gaining significant individual funding: out of around 200 applications, his new research project, together with six other projects, claimed this year's funding awarded by the international "Human Frontier Science Program" (HFSP).


The sea anemone Nematostella vectensis grows to a length of 5-8 centimetres and is commonly found off North Atlantic coasts.

Photo: Dr. Adam Reitzel


The sea anemones are easily bred in the laboratory, and thanks to their simple structure they often serve as model organisms in biology.

Photo: Christian Urban, Kiel University

Together with a US-American and an Australian colleague, Fraune will now be working on the question of how living things are able to quickly adapt to changed environmental conditions influenced by climate change. Over the next three years, the equivalent of 900,000 euros of HFSP funds will now be available to the Kiel-based biologist as well as Dr. Adam Reitzel from the University of North Carolina at Charlotte and Dr. Sylvain Foret from the Australian National University in Canberra for this research work.

Living things adapt to their environment from generation to generation by gradually changing and reconfiguring their genetic information – this is how the traditional theory of evolution explains the ability of all living things to change. As a result of global warming, however, many species are displaying an extremely quick ability to adapt to changing living conditions.

Clearly, factors that are to date unknown must be responsible for this. According to Fraune, Reitzel and Foret, epigenetics, i.e. heredity controlled by changes in chromosomes, and bacterial colonisation of an organism could be the driving forces behind this accelerated evolution. As unlike the composition of genes, these two factors can react quickly to environmental change.

The researchers plan to study the influence of epigenetics and bacterial colonisation on the sea anemone species Nematostella vectensis. They aim to find out how these creatures can adapt themselves specifically to changes in water temperature – and how they pass these adaptations on to their progeny. The first findings suggest that the anemones do this by changing their bacterial colonisation. "The already noticeable effects of climate change show that the traditional model of evolution is not adequate to explain environmental adaptations – it is simply too slow. We want to find out whether the changes in the bacterial composition of an organism and the influence of epigenetics can provide the missing explanations", says Fraune.

Using the adaptation to temperature of sea anemones living in environments strongly affected by climate change as an example, the aim of the research project is to determine whether non-genetic factors may be responsible for the ability of living things to quickly adapt to changing environmental conditions. The answer to these questions could provide fundamental findings for a new research field: scientists around the world have begun to redefine life as a functional unit of different living things beyond the boundaries of biological species.

They call this type of unit a metaorganism. For a few weeks now, Kiel University has had its own new Collaborative Research Centre (CRC) 1182 "Origin and Function of Metaorganisms". Fraune is involved in this with two additional projects. The new CRC deals with all aspects of the issue of the origin and effects of interactions between living things, micro-organisms and environment defined as metaorganisms. Fraune's HFSP project could provide an important contribution to this research by highlighting the role of interactions between organism and bacteria in the context of environment adaptation.

About the Human Frontier Science Program
The Human Frontier Science Program (HFSP) is an international research support program in life sciences. Key elements are, in particular, innovative, cutting edge research approaches that are expected to extend the borders of research fields within the life sciences. HFSP funding is also aimed at establishing international partnerships, supporting young scientists and strengthening interdisciplinary cooperation. The HFSP program is one of the most important and financially strongest international sponsors of research into life sciences, especially in its support of young scientists. It is sponsored by the European Union (EU) and ten other non-EU states.

Photos/material is available for download:

http://www.uni-kiel.de/download/pm/2016/2016-129-1.jpg
The sea anemone Nematostella vectensis grows to a length of 5-8 centimetres and is commonly found off North Atlantic coasts.
Photo: Dr. Adam Reitzel

http://www.uni-kiel.de/download/pm/2016/2016-129-2.jpg
The sea anemones are easily bred in the laboratory, and thanks to their simple structure they often serve as model organisms in biology.
Photo: Christian Urban, Kiel University

Contact:
Dr. Sebastian Fraune
Zoological Institute, Kiel University
Tel.: +49 (0)431-880-4149
E-Mail: sfraune@zoologie.uni-kiel.de

More information:
Dr. Sebastian Fraune's website:
http://www.bosch.zoologie.uni-kiel.de/?page_id=757

“Human Frontier Science Program”:
http://www.hfsp.org/

Collaborative Research Centre (CRC) 1182 "Origin and Function of Metaorganisms":
http://www.metaorganism-research.com/

Kiel University
Press, Communication and Marketing, Dr. Boris Pawlowski
Address: D-24098 Kiel, phone: +49 (0431) 880-2104, fax: +49 (0431) 880-1355
E-Mail: ► presse@uv.uni-kiel.de, Internet: ► www.uni-kiel.de
Twitter: ► www.twitter.com/kieluni, Facebook: ► www.facebook.com/kieluni
Text / Redaktion: Christian Urban

Christian Urban | Christian-Albrechts-Universität zu Kiel

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>