Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Putting Vision Into Context

23.12.2015

The Thalamus not only relays visual signals from the eye to the visual cortex as previously thought, but also conveys additional, contextual information. Integrating these different signals is essential to understand and interpret what we see in the world around us. Prof. Sonja Hofer and her research team at the Biozentrum, University Basel, investigate how the brain processes visual stimuli and how contextual information shapes our visual perception. Their latest findings are reported in “Nature Neuroscience”.

As soon as we open our eyes in the morning, our brain is flooded with images. Information about these images is sent from the eyes to a brain region called the thalamus, and from there on to the visual cortex. The visual cortex, which comprises the largest part of the human brain, is responsible for analyzing visual information and allows us to see.


Context is essential: The people in the picture are the same size but appear larger with increasing distance.

Universität Basel, Sonja Hofer

In contrast, the thalamus has until now been considered mostly as a relay for visual information. The research team led by Prof. Sonja Hofer at the Biozentrum, University of Basel, has discovered in mice that a special part of the thalamus — called the Pulvinar — supplies the visual cortex with additional, non-visual information.

Contextual information is essential for visual perception

What we see is not only based on the signals that our eyes send to our brain, but is influenced strongly by the context the visual stimulus is presented in, on our previous knowledge, and expectations. Optical illusions, as the one shown here, illustrate how important such non-visual, contextual information is for our perception.

The visual cortex receives this additional information from other brain areas and uses it to allow us to understand and interpret the visual world. Prof. Hofer and her team measured the specific signals transmitted to visual cortex from the Thalamus, and found that the Pulvinar not only conveyed visual signals but is also one of the brain areas that provide additional information about the context of visual stimuli.

Movements in the environment can be detected effectively

Moreover, the researchers could identify this additional information in more detail. For example, the Pulvinar sends signals about sudden, unpredicted motion in the environment which is not caused by the animal’s own movements.

“Visual signals that the brain cannot predict might be especially important, such as a car that suddenly appears, or maybe an approaching predator in the case of the mouse. The Pulvinar might facilitate the detection of these stimuli,” explains Dr Morgane Roth, one of the authors of the study.

Although the Pulvinar is the largest part of the thalamus in humans, its function is still largely unknown. The researchers’ findings begin to shed some light on the role of this mysterious structure.

Another piece of the puzzle are the signals sent back to the Pulvinar from visual cortex, which seem to make information flow back and forth between the two parts of the brain in a loop. Why this is the case is still completely unclear. Prof. Hofer’s team is now planning to study these visual loops, and to find out how signals from the Pulvinar influence our visual perceptions and actions.

Original article

Morgane M. Roth, Johannes C. Dahmen, Dylan R. Muir, Fabia Imhof, Francisco J. Martini, Sonja B. Hofer
Thalamic nuclei convey diverse contextual information to layer 1 of visual cortex.
Nature Neuroscience (2015) | doi:10.1038/nn.4197

Further information

Heike Sacher, University of Basel, Biozentrum, phone: +41 61 267 14 49, email: heike.sacher@unibas.ch

Weitere Informationen:

https://www.unibas.ch/en/News-Events/News/Uni-Research/Putting-vision-into-conte...

Heike Sacher | Universität Basel

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>