Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Putting the brakes on harmful fungal spores

15.01.2015

What role do light-sensitive proteins play in a fungus that attacks rice plants? Researchers from Würzburg and Seville have answered this question: the proteins retard the germination of the fungal spores.

Fusarium fujikuroi: This is the name of a fungus that infects rice plants. It spreads through their tissues, makes their stems long and weak, and, in the worst-case scenario, kills them. If the plants survive this attack from the parasite, they do not yield a full harvest: it may be up to 20 percent smaller, as the International Rice Research Institute (in the Philippines) has found.


The CarO rhodopsin of the fungus Fusarium fujikuroi is found mainly in the spores (green dye). Spores without rhodopsin (bottom left) germinate far more quickly than those with rhodopsin (right).

Images: Ulrich Terpitz

The fungus attacks the rice via the grains or roots. If its spores reach there, they germinate and push fine tubes into the plant interior. Spore germination depends greatly on the protein CarO (carotenoid opsin), which belongs to the group of rhodopsins. This is reported by researchers from the University of Würzburg’s Biocenter and from the University of Seville in “Scientific Reports”, a journal by the Nature Group.

Describing the role of a fungal rhodopsin for the first time

Rhodopsins are found in all fungi that grow on plants. “Until now, however, nobody knew what biological functions they fulfil,” says Würzburg scientist Ulrich Terpitz. His junior research group at the Department of Biotechnology and Biophysics has now shed light on this matter for the first time. It has discovered with the fungus Fusarium fujikuroi that the CarO rhodopsin accumulates particularly strongly in the spores. It is activated by light and then acts as an ion pump that transports protons out from the fungal cell.

When the researchers examined fungi mutants lacking the rhodopsin, they found that the spores of such fungi germinate far more quickly than normal in the presence of light. “Light activates the rhodopsin, and this in turn retards the germination,” explains Terpitz.
Mechanism for regulating spore germination

This makes sense for the fungus: “The spores are created in the light, on the leaves of the rice plants. But they should not germinate until they are in dark soil because there they are close to the infection sites, by the roots, or fallen rice grains.” Presumably the CarO rhodopsin therefore helps prevent germination of the spores until they have reached the soil, says the Würzburg biologist.

Further studies on corn smut planned

As the next step, the researchers want to try to infect rice plants in the laboratory with rhodopsin-free fungal spores – to see whether the rhodopsin can affect the infectivity of the fungi. They are also planning to examine the rhodopsins of another fungus, corn smut (Ustilago maydis). In this pathogen there are two other rhodopsins alongside CarO. “We are also keen to take a very close look at their role as proton pumps and their positioning in the fungus,” says Terpitz.

This work is funded by the German Research Foundation (DFG).

Light-sensitive proteins in fungi

Rhodopsins are only one group of light-sensitive proteins known in fungi. There is particular uncertainty regarding their role. The other light receptors, on the other hand, have been well researched. They are known to control many vital processes, such as the direction of growth of the hyphae, circadian rhythms, or spore formation.

García-Martínez, J., Brunk, M., Avalos, J. & Terpitz, U.: “The CarO rhodopsin of the fungus Fusarium fujikuroi is a light-driven proton pump that retards spore germination.” Scientific Reports 5, 7798; January 15, 2015, DOI:10.1038/srep07798

Contact

Dr. Ulrich Terpitz, Department of Biotechnology and Biophysics, University of Würzburg, T +49 (0)931 31-84226, ulrich.terpitz@uni-wuerzburg.de

Robert Emmerich | Julius-Maximilians-Universität Würzburg
Further information:
http://www.uni-wuerzburg.de

Further reports about: Fusarium corn smut fungal fungal spores fungi fungus fungus Fusarium proteins rice plants spores

More articles from Life Sciences:

nachricht Discovery of a Key Regulatory Gene in Cardiac Valve Formation
24.05.2017 | Universität Basel

nachricht Carcinogenic soot particles from GDI engines
24.05.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>