Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pushing the limits of lensless imaging

22.09.2015

At the Frontiers in Optics conference researchers will describe a custom-built ultrafast laser that could help image everything from semiconductor chips to cells in real time

Using ultrafast beams of extreme ultraviolet light streaming at a 100,000 times a second, researchers from the Friedrich Schiller University Jena, Germany, have pushed the boundaries of a well-established imaging technique. Not only did they make the highest resolution images ever achieved with this method at a given wavelength, they also created images fast enough to be used in real time. Their new approach could be used to study everything from semiconductor chips to cancer cells.


In coherent diffraction imaging, extreme ultraviolet light scatters off the target and produces a diffraction pattern. A computer analyzes the pattern to reconstruct an image of the target material.

Credit: Dr. Michael Zürch, Friedrich Schiller University Jena, Germany

The team will present their work at the Frontiers in Optics, The Optical Society's annual meeting and conference in San Jose, California, USA, on 22 October 2015.

The researchers' wanted to improve on a lensless imaging technique called coherent diffraction imaging, which has been around since the 1980s. To take a picture with this method, scientists fire an X-ray or extreme ultraviolet laser at a target. The light scatters off, and some of those photons interfere with one another and find their way onto a detector, creating a diffraction pattern. By analyzing that pattern, a computer then reconstructs the path those photons must have taken, which generates an image of the target material -- all without the lens that's required in conventional microscopy.

"The computer does the imaging part -- forget about the lens," explained Michael Zürch, Friedrich Schiller University Jena, Germany and lead researcher. "The computer emulates the lens."

Without a lens, the quality of the images primarily depends on the radiation source. Traditionally, researchers use big, powerful X-ray beams like the one at the SLAC National Accelerator Laboratory in Menlo Park, California, USA. Over the last ten years, researchers have developed smaller, cheaper machines that pump out coherent, laser-like beams in the laboratory setting. While those machines are convenient from the cost perspective, they have drawbacks when reporting results.

The table-top machines are unable to produce as many photons as the big expensive ones which limits their resolution. To achieve higher resolutions, the detector must be placed close to the target material -- similar to placing a specimen close to a microscope to boost the magnification. Given the geometry of such short distances, hardly any photons will bounce off the target at large enough angles to reach the detector. Without enough photons, the image quality is reduced.

Zürch and a team of researchers from Jena University used a special, custom-built ultrafast laser that fires extreme ultraviolet photons a hundred times faster than conventional table-top machines. With more photons, at a wavelength of 33 nanometers, the researchers were able to make an image with a resolution of 26 nanometers -- almost the theoretical limit. "Nobody has achieved such a high resolution with respect to the wavelength in the extreme ultraviolet before," Zürch said.

The ultrafast laser also overcame another drawback of conventional table-top light sources: long exposure times. If researchers have to wait for images, they can't get real-time feedback on the systems they study. Thanks to the new high-speed light source, Zürch and his colleagues have reduced the exposure time to only about a second -- fast enough for real-time imaging. When taking snapshots every second, the researchers reached a resolution below 80 nanometers.

The prospect of high-resolution and real-time imaging using such a relatively small setup could lead to all kinds of applications, Zürch said. Engineers can use this to hunt for tiny defects in semiconductor chips. Biologists can zoom in on the organelles that make up a cell. Eventually, he said, the researchers might be able to cut down on the exposure times even more and reach even higher resolution levels.

###

About the Presentation

The presentation, "Approaching the Abbe Limit in the Extreme Ultraviolet: Ultrafast Imaging Using a Compact High Average Power High Harmonic," by Michael Zürch, will take place from 13:00 - 14:45, Thursday, 22 October 2015, in The Fairmont Hotel, San Jose, California, USA.

Media Registration: A media room for credentialed press and analysts will be located on-site in The Fairmont Hotel, 18-22 October 2015. Media interested in attending the event should register on the FiO website media center: Media Center.

About FiO/LS

Frontiers in Optics (FiO) 2015 is The Optical Society's (OSA) 99th Annual Meeting and is being held together with Laser Science, the 31th annual meeting of the American Physical Society (APS) Division of Laser Science (DLS). The two meetings unite the OSA and APS communities for five days of quality, cutting-edge presentations, in-demand invited speakers and a variety of special events spanning a broad range of topics in optics and photonics--the science of light--across the disciplines of physics, biology and chemistry. The exhibit floor will feature leading optics companies, technology products and programs. More information at: http://www.FrontiersinOptics.org.

About The Optical Society

Founded in 1916, The Optical Society (OSA) is the leading professional organization for scientists, engineers, students and entrepreneurs who fuel discoveries, shape real-life applications and accelerate achievements in the science of light. Through world-renowned publications, meetings and membership initiatives, OSA provides quality research, inspired interactions and dedicated resources for its extensive global network of optics and photonics experts. OSA is a founding partner of the National Photonics Initiative and the 2015 International Year of Light. For more information, visit: http://www.osa.org.

Media Contact

Rebecca Andersen
RAndersen@osa.org
202-416-1443

 @opticalsociety

http://www.osa.org 

Rebecca Andersen | EurekAlert!

Further reports about: OSA Optical extreme ultraviolet limits nanometers photons ultrafast laser wavelength

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Fraunhofer Researchers Develop High-Pressure Sensors for Extreme Temperature

28.06.2017 | Power and Electrical Engineering

Zeolite catalysts pave the road to decentral chemical processes Confined space increases reactivity

28.06.2017 | Life Sciences

Extensive Funding for Research on Chromatin, Adrenal Gland, and Cancer Therapy

28.06.2017 | Awards Funding

VideoLinks
B2B-VideoLinks
More VideoLinks >>>