Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pruning of Blood Vessels: Cells Can Fuse With Themselves

20.04.2015

Cells of the vascular system of vertebrates can fuse with themselves. This process, which occurs when a blood vessel is no longer necessary and pruned, has now been described on the cellular level by Prof. Markus Affolter from the Biozentrum of the University of Basel. The findings of this study have been published in the journal “PLoS Biology”.

The vascular system is the supply network of the human organism and delivers oxygen and nutrients to the last corners of the body. So far, research on the vascular system has focused primarily on the formation of such vascular networks.


Blood vessel network of the zebrafish during the remodeling phase. Some of the small thin branches will regress to form a simpler vessel pattern.

Biozentrum, University of Basel

Markus Affolter’s research group at the Biozentrum of the University of Basel has now investigated the blood vessel pruning in the zebrafish and discovered that the cells have the ability to self-fuse at the membrane margins. Previously, it was unknown that blood vessel cells of vertebrates have this property.

Self-fusion observed in vertebrates for the first time

The formation of blood vessels follows a complicated architectural plan. “At a first glance, the plan for vascular regression seems to be the same but it must differ at the molecular level”, explains Markus Affolter. During vascular regression, most of the cells consecutively migrate and incorporate into the neighboring functional vessels.

The last single cell that remains in the pruning vessel reaches around the lumen and the membrane margins of this cell undergo fusion thus closing the vessel and assuring its tightness. This process, named cell self-fusion, ensures a controlled closure of a regressive blood vessel thus preventing blood leakage. For the first time this self-fusion of cells has been observed in vertebrates, the group humans also belong to. “Such cell behavior was so far only known in simpler organisms such as nematodes”, explains Markus Affolter.

Greater plasticity through self-fusion

During the development of the vascular network, blood vessels are constantly formed but many of them are only required temporarily. Just like a disused arm of a highly branched river, the flow of fresh blood through these vessels is interrupted and the organism begins to prune this side arm. In this way the vascular system regulates itself, optimizing its blood circulation by pruning and recycling the unnecessary vessels with reduced blood flow and blood pressure.

“This newly uncovered process is important for the understanding of blood vessel formation and regression on the cellular level, as this can also explain the extraordinary plasticity and changeability of the vascular system”, says Anna Lenard, the first author of this publication. These investigations were performed on the zebrafish, as in this almost transparent fish the development of blood vessels can be observed in the living animal using modern microscopy techniques.

Relevance of self-fusion for cancer?

“How the cell recognizes its own membrane margins and how fusion with neighboring blood vessel cells is prevented, is not yet known”, says Markus Affolter. Since a long time it has been postulated that each individual cell of an organism has its own code.

“The regression process could partly confirm this theory”, thinks Markus Affolter. Together with his team, he would like to investigate the self-fusion process more closely. As tumors require a well developed vascular system for their growth, a better understanding of the formation and regression of this network could open possibilities for the manipulation of such a system.

Original article:
Anna Lenard, Stephan Daetwyler, Charles Betz, Elin Ellertsdottir, Heinz-Georg Belting, Jan Huisken, Markus Affolter:
Endothelial Cell Self-fusion during Vascular Pruning.
PLoS Biology published online 17 April 2015 | DOI: 10.1371/journal.pbio.1002126

Further information:
Heike Sacher, Biozentrum Communications,Tel. +41 61 267 14 49, E-Mail: heike.sacher@unibas.ch University of Basel

Weitere Informationen:

https://www.unibas.ch/en/News-Events/News/Uni-Research/Pruning-of-blood-vessels....

Heike Sacher | Universität Basel

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>