Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protein 'spy' gains new abilities

28.04.2017

Rice University researchers build a novel switch to facilitate tagging of proteins in a cell

Rice University scientists have learned to spy on cells with a divide-and-conquer strategy to label proteins.


Rice University scientists have discovered a method to tag proteins with a controllable enzyme switch. When prompted, fragments of a tRNA synthetase come together and charge a tRNA with a bio-orthogonal amino acid (N3), which is inserted as a recognizable tag into all subsequent proteins made in the cell.

Credit: The Silberg Research Group/Rice University

Graduate student Emily Thomas, synthetic biologist Jonathan Silberg and their colleagues built upon established techniques that attach bio-orthogonal (noninterfering), artificial amino acids to transfer RNA (tRNA), which are used by ribosomes to synthesize proteins.

Because the amino acids are "noncanonical," they are effective tags that help researchers identify proteins being synthesized in a cell. The Rice lab's breakthrough was the discovery of a tRNA synthetase that only adds the amino acid to the tRNA when it binds a chemical. When prompted, the tRNA synthetase charges a tRNA with the bio-orthogonal amino acid, which is then used by ribosomes to insert the tag into proteins made in the cell.

The study appears in the American Chemical Society journal ACS Synthetic Biology.

These bio-orthogonal tags give researchers a snapshot of total protein synthesis in the cell. "Instead of physically separating a cell from a mixture to find the proteins being made, we can use this engineered switch to put what amounts to a fishhook on every protein in a specific cell," Silberg said. "This approach will allow us to increase spatial and temporal control over the tagging of proteins synthesized in a given cell."

Since many proteins appear and disappear during the development of an organism or the spread of a disease, the technique could be helpful to identify cellular changes that underlie disease. Thomas characterized her technique as a "protein spy."

"It spies on what proteins are being made inside the cell," she said. "Current technologies just spy on everything, but I want to be more specific. I want more control over when I turn my spy on or off, so I can track only the cells I'm interested in."

The researchers used an azidonorleucine (Anl) amino acid to tag proteins in Escherichia coli bacteria cells. Thomas' engineered switch is controlled like a computer program's AND gate. The switch only charges tRNA with Anl efficiently when the switch is synthesized and a chemical is present in the cell to flip the switch.

Silberg said the technique will provide new control over protein transcription and tagging to researchers. "In human biology, a lot of the control comes at the DNA level, but over the past 20 years it's become apparent that a lot of control comes at the protein level as well," he said. "We have fewer genes in our genome than people originally expected because there's this other layer of complexity in the proteome, the collection of proteins expressed by the genome.

"Proteins are the business side of the cell," he said. "They provide structure and do a lot of the signaling within a cell. They give rise to a lot of the complexity we observe. In the future, our technique could help people understand the details of a disease by providing snapshots of proteins synthesized in specific cells at different times during development and allowing comparisons of healthy and diseased cells.

"The prospect of doing this in humans is the genetic technology equivalent of going to Mars right now," Silberg said. "It's far out."

###

Co-authors of the paper are Rice alumnus Naresh Pandey, graduate student Sarah Knudsen and Zachary Ball, an associate professor of chemistry. Silberg is an associate professor of biosciences.

The research was supported by the National Science Foundation, the Robert A. Welch Foundation, the John S. Dunn Collaborative Research Award, the National Aeronautics and Space Administration, the Keck Center of the Gulf Coast Consortia, the Houston Area Molecular Biophysics Program and the National Institute of General Medical Sciences.

Read the abstract at http://pubs.acs.org/doi/abs/10.1021/acssynbio.7b00100

This news release can be found online at http://news.rice.edu/2017/04/27/protein-spy-gains-new-abilities/

Follow Rice News and Media Relations via Twitter @RiceUNews

Related materials:

The Silberg Research Group: http://www.bioc.rice.edu/~joff/

Wiess School of Natural Sciences: http://natsci.rice.edu

Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation's top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is home to the Baker Institute for Public Policy. With 3,879 undergraduates and 2,861 graduate students, Rice's undergraduate student-to-faculty ratio is 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice is ranked No. 1 for happiest students and for lots of race/class interaction by the Princeton Review. Rice is also rated as a best value among private universities by Kiplinger's Personal Finance. To read "What they're saying about Rice," go to http://tinyurl.com/RiceUniversityoverview.

Media Contact

David Ruth
david@rice.edu
713-348-6327

 @RiceUNews

http://news.rice.edu 

David Ruth | EurekAlert!

More articles from Life Sciences:

nachricht More genes are active in high-performance maize
19.01.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht How plants see light
19.01.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>