Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protein 'spy' gains new abilities

28.04.2017

Rice University researchers build a novel switch to facilitate tagging of proteins in a cell

Rice University scientists have learned to spy on cells with a divide-and-conquer strategy to label proteins.


Rice University scientists have discovered a method to tag proteins with a controllable enzyme switch. When prompted, fragments of a tRNA synthetase come together and charge a tRNA with a bio-orthogonal amino acid (N3), which is inserted as a recognizable tag into all subsequent proteins made in the cell.

Credit: The Silberg Research Group/Rice University

Graduate student Emily Thomas, synthetic biologist Jonathan Silberg and their colleagues built upon established techniques that attach bio-orthogonal (noninterfering), artificial amino acids to transfer RNA (tRNA), which are used by ribosomes to synthesize proteins.

Because the amino acids are "noncanonical," they are effective tags that help researchers identify proteins being synthesized in a cell. The Rice lab's breakthrough was the discovery of a tRNA synthetase that only adds the amino acid to the tRNA when it binds a chemical. When prompted, the tRNA synthetase charges a tRNA with the bio-orthogonal amino acid, which is then used by ribosomes to insert the tag into proteins made in the cell.

The study appears in the American Chemical Society journal ACS Synthetic Biology.

These bio-orthogonal tags give researchers a snapshot of total protein synthesis in the cell. "Instead of physically separating a cell from a mixture to find the proteins being made, we can use this engineered switch to put what amounts to a fishhook on every protein in a specific cell," Silberg said. "This approach will allow us to increase spatial and temporal control over the tagging of proteins synthesized in a given cell."

Since many proteins appear and disappear during the development of an organism or the spread of a disease, the technique could be helpful to identify cellular changes that underlie disease. Thomas characterized her technique as a "protein spy."

"It spies on what proteins are being made inside the cell," she said. "Current technologies just spy on everything, but I want to be more specific. I want more control over when I turn my spy on or off, so I can track only the cells I'm interested in."

The researchers used an azidonorleucine (Anl) amino acid to tag proteins in Escherichia coli bacteria cells. Thomas' engineered switch is controlled like a computer program's AND gate. The switch only charges tRNA with Anl efficiently when the switch is synthesized and a chemical is present in the cell to flip the switch.

Silberg said the technique will provide new control over protein transcription and tagging to researchers. "In human biology, a lot of the control comes at the DNA level, but over the past 20 years it's become apparent that a lot of control comes at the protein level as well," he said. "We have fewer genes in our genome than people originally expected because there's this other layer of complexity in the proteome, the collection of proteins expressed by the genome.

"Proteins are the business side of the cell," he said. "They provide structure and do a lot of the signaling within a cell. They give rise to a lot of the complexity we observe. In the future, our technique could help people understand the details of a disease by providing snapshots of proteins synthesized in specific cells at different times during development and allowing comparisons of healthy and diseased cells.

"The prospect of doing this in humans is the genetic technology equivalent of going to Mars right now," Silberg said. "It's far out."

###

Co-authors of the paper are Rice alumnus Naresh Pandey, graduate student Sarah Knudsen and Zachary Ball, an associate professor of chemistry. Silberg is an associate professor of biosciences.

The research was supported by the National Science Foundation, the Robert A. Welch Foundation, the John S. Dunn Collaborative Research Award, the National Aeronautics and Space Administration, the Keck Center of the Gulf Coast Consortia, the Houston Area Molecular Biophysics Program and the National Institute of General Medical Sciences.

Read the abstract at http://pubs.acs.org/doi/abs/10.1021/acssynbio.7b00100

This news release can be found online at http://news.rice.edu/2017/04/27/protein-spy-gains-new-abilities/

Follow Rice News and Media Relations via Twitter @RiceUNews

Related materials:

The Silberg Research Group: http://www.bioc.rice.edu/~joff/

Wiess School of Natural Sciences: http://natsci.rice.edu

Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation's top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is home to the Baker Institute for Public Policy. With 3,879 undergraduates and 2,861 graduate students, Rice's undergraduate student-to-faculty ratio is 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice is ranked No. 1 for happiest students and for lots of race/class interaction by the Princeton Review. Rice is also rated as a best value among private universities by Kiplinger's Personal Finance. To read "What they're saying about Rice," go to http://tinyurl.com/RiceUniversityoverview.

Media Contact

David Ruth
david@rice.edu
713-348-6327

 @RiceUNews

http://news.rice.edu 

David Ruth | EurekAlert!

More articles from Life Sciences:

nachricht Could this protein protect people against coronary artery disease?
17.11.2017 | University of North Carolina Health Care

nachricht Microbial resident enables beetles to feed on a leafy diet
17.11.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>